reddit上的一个帖子提出了一个很有趣的问题:

尾递归函数可以简单地转换为迭代函数。其他的可以通过使用显式堆栈进行转换。每个递归都能转化为迭代吗?

文章中的(counter?)例子是:

(define (num-ways x y)
  (case ((= x 0) 1)
        ((= y 0) 1)
        (num-ways2 x y) ))

(define (num-ways2 x y)
  (+ (num-ways (- x 1) y)
     (num-ways x (- y 1))

当前回答

原则上,在数据结构和调用堆栈都具有无限状态的语言中,总是可以删除递归并替换为迭代。这是丘奇-图灵论文的一个基本结论。

Given an actual programming language, the answer is not as obvious. The problem is that it is quite possible to have a language where the amount of memory that can be allocated in the program is limited but where the amount of call stack that can be used is unbounded (32-bit C where the address of stack variables is not accessible). In this case, recursion is more powerful simply because it has more memory it can use; there is not enough explicitly allocatable memory to emulate the call stack. For a detailed discussion on this, see this discussion.

其他回答

递归函数执行流可以表示为树。 同样的逻辑可以通过循环来实现,循环使用数据结构遍历该树。 深度优先遍历可以使用堆栈完成,宽度优先遍历可以使用队列完成。

所以,答案是肯定的。为什么:https://stackoverflow.com/a/531721/2128327。

任何递归都可以在一个循环中完成吗?是的,因为 图灵机所做的一切都是通过执行一个循环完成的: 获取一条指令, 评估, 转到1。

所有可计算的函数都可以用图灵机计算,因此递归系统和图灵机(迭代系统)是等价的。

递归意味着不管你喜不喜欢,函数都会调用自己。当人们谈论是否可以在没有递归的情况下完成一些事情时,他们的意思是这样的,你不能说“不,这是不对的,因为我不同意递归的定义”是一个有效的陈述。

考虑到这一点,你所说的其他一切都是无稽之谈。你说的另一件不是废话的事情是,你无法想象没有调用栈的编程。这是几十年来一直在做的事情,直到使用调用堆栈变得流行起来。旧版本的FORTRAN缺乏调用堆栈,它们工作得很好。

顺便提一下,有些图灵完备语言只实现递归(例如SML)作为循环的一种手段。也有一些图灵完备语言只是将迭代作为一种循环的手段来实现(例如FORTRAN IV)。丘奇-图灵命题证明了在纯递归语言中任何可能的事情都可以在非递归语言中完成,反之亦然,因为它们都具有图灵完备性。

看看维基百科上的以下条目,你可以把它们作为一个起点,找到你问题的完整答案。

计算机科学中的递归 递归关系

下面一段话可能会给你一些提示,让你知道从哪里开始:

求解递归关系意味着获得一个封闭形式的解:n的非递归函数。

再看看这篇文章的最后一段。

有时候替换递归要简单得多。在20世纪90年代,递归曾经是计算机科学中很流行的东西,所以当时很多普通的开发人员认为,如果你用递归来解决问题,这是一个更好的解决方案。所以他们会使用递归而不是反向循环,或者类似的愚蠢的东西。所以有时候移除递归是一种简单的“这很明显”的练习。

现在这已经不是什么问题了,因为时尚已经转向了其他技术。