在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
在tf.nn中“SAME”和“VALID”填充之间的区别是什么?tensorflow的Max_pool ?
在我看来,'VALID'意味着当我们做max pool时,边缘外不会有零填充。
根据深度学习卷积算法指南,它说池操作符中不会有填充,即只使用tensorflow的“VALID”。 但什么是'SAME'填充的最大池张量流量?
当前回答
有三种填充选择:有效(无填充),相同(或一半),满。你可以在这里(Theano)找到解释: http://deeplearning.net/software/theano/tutorial/conv_arithmetic.html
有效或无填充:
有效填充不涉及零填充,因此它只覆盖有效输入,不包括人工生成的零。对于内核大小为k的步幅s=1,则输出长度为((输入长度)- (k-1))。
相同或半填充:
当s=1时,相同的填充使输出的大小与输入的大小相同。如果s=1,补零的个数为(k-1)。
完全填充:
完全填充意味着内核运行整个输入,因此在结束时,内核可能只满足一个输入,其他为零。如果s=1,填充的零的数量是2(k-1)。如果s=1,则输出长度为((输入长度)+ (k-1))。
因此,填充的数量:(有效)<=(相同)<=(满)
其他回答
快速的解释
VALID:不要应用任何填充,也就是说,假设所有的维度都是有效的,这样输入的图像就会被你指定的过滤器和stride完全覆盖。
SAME:应用填充到输入(如果需要),以便输入图像被过滤器和步幅完全覆盖。对于stride 1,这将确保输出图像大小与输入相同。
笔记
This applies to conv layers as well as max pool layers in same way The term "valid" is bit of a misnomer because things don't become "invalid" if you drop part of the image. Sometime you might even want that. This should have probably be called NO_PADDING instead. The term "same" is a misnomer too because it only makes sense for stride of 1 when output dimension is same as input dimension. For stride of 2, output dimensions will be half, for example. This should have probably be called AUTO_PADDING instead. In SAME (i.e. auto-pad mode), Tensorflow will try to spread padding evenly on both left and right. In VALID (i.e. no padding mode), Tensorflow will drop right and/or bottom cells if your filter and stride doesn't full cover input image.
Tensorflow 2.0兼容答案:上面已经提供了关于“有效”和“相同”填充的详细解释。
但是,我将在Tensorflow 2中指定不同的池化函数和它们各自的命令。X(>= 2.0),为社区的利益。
1.x中的函数:
tf.nn.max_pool
tf.keras.layers.MaxPool2D
tf中平均池值=>无。神经网络,tf.keras.layers.AveragePooling2D
2.x中的函数:
tf.nn。Max_pool如果在2中使用。如果从1迁移,则tf. compat_v1 .nn.max_pool_v2或tf. compat_v2 .nn.max_pool。X到2。X。
tf.keras.layers。MaxPool2D如果在2中使用。x和
tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v1 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d或tf. compat_v2 .keras.layers. maxpooling2d,如果从1迁移。X到2。X。
平均池=> tf.nn。Avg_pool2d或tf.keras.layers。如果在TF 2中使用AveragePooling2D。x和
tf. compat_v1 . dn .avg_pool_v2或tf. compat_v2 .v2. dn .avg_pool或tf. compat_v1 .keras.layers. averagepooling2d或tf. compat_v1 .keras.layers. avgpool2d或tf. compat_v2 .keras.layers. averagepooling2d或tf. compat_v2 .keras.layers. avgpool2d,如果从1迁移。X到2。X。
有关Tensorflow迁移的更多信息。X到2。请参考本迁移指南。
我引用了官方tensorflow文档https://www.tensorflow.org/api_guides/python/nn#Convolution中的答案 对于'SAME'填充,输出高度和宽度的计算如下:
out_height = ceil(float(in_height) / float(strides[1]))
out_width = ceil(float(in_width) / float(strides[2]))
顶部和左侧的填充被计算为:
pad_along_height = max((out_height - 1) * strides[1] +
filter_height - in_height, 0)
pad_along_width = max((out_width - 1) * strides[2] +
filter_width - in_width, 0)
pad_top = pad_along_height // 2
pad_bottom = pad_along_height - pad_top
pad_left = pad_along_width // 2
pad_right = pad_along_width - pad_left
对于'VALID'填充,输出高度和宽度的计算如下:
out_height = ceil(float(in_height - filter_height + 1) / float(strides[1]))
out_width = ceil(float(in_width - filter_width + 1) / float(strides[2]))
填充值总是0。
有效填充是没有填充。 相同的填充在某种程度上是输出与输入大小相同的填充。
为了补充YvesgereY的回答,我发现这个可视化非常有用:
填充'valid'是第一个数字。滤镜窗口停留在图像内部。
填充'same'是第三个数字。输出是相同的大小。
在这篇文章里找到的
可视化致谢:vdumoulin@GitHub