我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
我有一台有1mb内存的电脑,没有其他本地存储。我必须使用它通过TCP连接接受100万个8位十进制数字,对它们进行排序,然后通过另一个TCP连接发送排序的列表。
数字列表可能包含重复的,我不能丢弃。代码将放在ROM中,所以我不需要从1 MB中减去我的代码的大小。我已经有了驱动以太网端口和处理TCP/IP连接的代码,它需要2 KB的状态数据,包括1 KB的缓冲区,代码将通过它读取和写入数据。这个问题有解决办法吗?
问答来源:
slashdot.org
cleaton.net
当前回答
基数树表示可以接近于处理这个问题,因为基数树利用了“前缀压缩”的优势。但是很难想象一个基树表表法可以在一个字节中表示单个节点——两个可能是极限。
但是,不管数据是如何表示的,一旦它被排序,它就可以以前缀压缩的形式存储,其中数字10、11和12将由001b、001b、001b表示,表示从前一个数字增加1。那么,也许10101b表示增量5,1101001b表示增量9,以此类推。
其他回答
我认为解决方案是结合视频编码的技术,即离散余弦变换。在数字视频中,不是将视频的亮度或颜色的变化记录为常规值,如110 112 115 116,而是从最后一个中减去每一个(类似于运行长度编码)。110 112 115 116变成110 2 3 1。这些值,2,3 1比原始值需要更少的比特。
So lets say we create a list of the input values as they arrive on the socket. We are storing in each element, not the value, but the offset of the one before it. We sort as we go, so the offsets are only going to be positive. But the offset could be 8 decimal digits wide which this fits in 3 bytes. Each element can't be 3 bytes, so we need to pack these. We could use the top bit of each byte as a "continue bit", indicating that the next byte is part of the number and the lower 7 bits of each byte need to be combined. zero is valid for duplicates.
当列表填满时,数字之间的距离应该越来越近,这意味着平均只有1个字节用于确定到下一个值的距离。7位值和1位偏移(如果方便的话),但可能存在一个“继续”值需要少于8位的最佳点。
总之,我做了一些实验。我使用随机数生成器,我可以将100万个排序过的8位十进制数字放入大约1279000字节。每个数字之间的平均间隔始终是99…
public class Test {
public static void main(String[] args) throws IOException {
// 1 million values
int[] values = new int[1000000];
// create random values up to 8 digits lrong
Random random = new Random();
for (int x=0;x<values.length;x++) {
values[x] = random.nextInt(100000000);
}
Arrays.sort(values);
ByteArrayOutputStream baos = new ByteArrayOutputStream();
int av = 0;
writeCompact(baos, values[0]); // first value
for (int x=1;x<values.length;x++) {
int v = values[x] - values[x-1]; // difference
av += v;
System.out.println(values[x] + " diff " + v);
writeCompact(baos, v);
}
System.out.println("Average offset " + (av/values.length));
System.out.println("Fits in " + baos.toByteArray().length);
}
public static void writeCompact(OutputStream os, long value) throws IOException {
do {
int b = (int) value & 0x7f;
value = (value & 0x7fffffffffffffffl) >> 7;
os.write(value == 0 ? b : (b | 0x80));
} while (value != 0);
}
}
你最多要数到99,999,999,并在沿途标明1,000,000个站点。因此,可以使用位流进行解释,即1表示递增计数器,0表示输出数字。如果流中的前8位是00110010,到目前为止我们将有0,0,2,2,3。
Log (99,999,999 + 1,000,000) / Log(2) = 26.59。你的内存中有2^28位。你只需要用一半!
我们可以利用网络堆栈,在我们得到所有数字之前,按顺序发送数字。如果你发送1M的数据,TCP/IP会把它分解成1500字节的数据包,并按照目标发送。每个包将被赋予一个序列号。
我们可以用手来做。在填满内存之前,我们可以对现有的数据进行排序,并将列表发送给目标,但在每个数字周围的序列中留下空洞。然后用同样的方法处理第二个1/2的数字,使用序列中的这些洞。
远端的网络堆栈将按顺序组装结果数据流,然后将其提交给应用程序。
它使用网络来执行归并排序。这是一个完全的黑客,但我是受到之前列出的其他网络黑客的启发。
我们有1 MB - 3 KB RAM = 2^23 - 3*2^13位= 8388608 - 24576 = 8364032位可用。
我们给出10^8范围内的10^6个数。这给出了~100 < 2^7 = 128的平均差距
让我们首先考虑一个比较简单的问题,即当所有间距都< 128时,数字间距相当均匀。这很简单。只存储第一个数字和7位空白:
(27位)+ 10^6个7位间隔数=需要7000027位
注意重复的数字间隔为0。
但如果间隔大于127呢?
好吧,让我们直接表示小于127的间隙大小,但是127的间隙大小后面跟着一个连续的8位编码来表示实际的间隙长度:
10xxxxxx xxxxxxxx = 127 .. 16,383
110xxxxx xxxxxxxx xxxxxxxx = 16384 .. 2,097,151
etc.
注意这个数字表示描述了它自己的长度,所以我们知道下一个间隙数何时开始。
对于小于127的小间隙,仍然需要7000027位。
可能有高达(10^8)/(2^7)= 781250个23位的间隙数,需要额外的16* 781250 = 12500,000位,这是太多了。我们需要一个更紧凑和缓慢增加的差距表示。
平均差距大小是100,所以如果我们把它们重新排序 [100, 99, 101, 98, 102,…], 2, 198, 1, 199, 0, 200, 201, 202,…] 然后用密集的二进制斐波那契基编码索引它,没有对零(例如,11011=8+5+2+1=16),数字用“00”分隔,然后我认为我们可以保持足够短的差距表示,但它需要更多的分析。
我将利用TCP的重传行为。
让TCP组件创建一个大的接收窗口。 收到一定数量的包,但没有发送ACK。 处理这些传递,创建一些(前缀)压缩数据结构 对最后一个不再需要的数据包发送重复的ack /等待重传超时 转到2 所有数据包被接受
这假设了桶或多次传递的某种好处。
可能是通过对批次/桶进行排序并合并它们。->根树
使用这种技术接受并排序前80%,然后读取后20%,验证后20%不包含将落在最低数字的前20%的数字。然后发送最低的20%的数字,从内存中删除,接受剩下的20%的新数字并合并。**