我想找出我的数据的每一列中NaN的数量。


当前回答

我使用这个循环来计算每一列的缺失值:

# check missing values
import numpy as np, pandas as pd
for col in df:
      print(col +': '+ np.str(df[col].isna().sum()))

其他回答

你可以使用value_counts方法打印np.nan的值

s.value_counts(dropna = False)[np.nan]

根据给出的答案和一些改进,这是我的方法

def PercentageMissin(Dataset):
    """this function will return the percentage of missing values in a dataset """
    if isinstance(Dataset,pd.DataFrame):
        adict={} #a dictionary conatin keys columns names and values percentage of missin value in the columns
        for col in Dataset.columns:
            adict[col]=(np.count_nonzero(Dataset[col].isnull())*100)/len(Dataset[col])
        return pd.DataFrame(adict,index=['% of missing'],columns=adict.keys())
    else:
        raise TypeError("can only be used with panda dataframe")

如果你正在使用Jupyter笔记本,如何....

 %%timeit
 df.isnull().any().any()

or

 %timeit 
 df.isnull().values.sum()

或者,数据中是否存在nan,如果有,在哪里?

 df.isnull().any()

如果你需要得到非NA (non-None)和NA (None)计数在不同的组拉出groupby:

gdf = df.groupby(['ColumnToGroupBy'])

def countna(x):
    return (x.isna()).sum()

gdf.agg(['count', countna, 'size'])

这将返回每个组的非NA、NA和总条目数。

自从pandas 0.14.1以来,我的建议在value_counts方法中有一个关键字参数已经实现:

import pandas as pd
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
for col in df:
    print df[col].value_counts(dropna=False)

2     1
 1     1
NaN    1
dtype: int64
NaN    2
 1     1
dtype: int64