我想找出我的数据的每一列中NaN的数量。
当前回答
你可以试试:
In [1]: s = pd.DataFrame('a'=[1,2,5, np.nan, np.nan,3],'b'=[1,3, np.nan, np.nan,3,np.nan])
In [4]: s.isna().sum()
Out[4]: out = {'a'=2, 'b'=3} # the number of NaN values for each column
如果需要nan的总和:
In [5]: s.isna().sum().sum()
Out[6]: out = 5 #the inline sum of Out[4]
其他回答
.sum df.isnull () () 将给出缺失值的列和。
如果你想知道特定列中缺失值的总和,那么以下代码将起作用:
我写了一个简短的函数(Python 3)来生成.info作为pandas数据框架,然后可以写入excel:
df1 = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
def info_as_df (df):
null_counts = df.isna().sum()
info_df = pd.DataFrame(list(zip(null_counts.index,null_counts.values))\
, columns = ['Column', 'Nulls_Count'])
data_types = df.dtypes
info_df['Dtype'] = data_types.values
return info_df
print(df1.info())
print(info_as_df(df1))
这使:
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 3 entries, 0 to 2
Data columns (total 2 columns):
# Column Non-Null Count Dtype
--- ------ -------------- -----
0 a 2 non-null float64
1 b 1 non-null float64
dtypes: float64(2)
memory usage: 176.0 bytes
None
Column Nulls_Count Dtype
0 a 1 float64
1 b 2 float64
2017年7月,Dzone有一篇不错的文章,详细介绍了总结NaN值的各种方法。点击这里查看。
我所引用的文章提供了额外的价值:(1)展示了一种方法来计算和显示每列的NaN计数,以便人们可以轻松地决定是否丢弃这些列;(2)演示了一种方法来选择那些特定的具有NaN的行,以便它们可以选择性地丢弃或估算。
这里有一个快速的例子来演示这种方法的实用性——只有几个列,也许它的有用性不明显,但我发现它对较大的数据框架很有帮助。
import pandas as pd
import numpy as np
# example DataFrame
df = pd.DataFrame({'a':[1,2,np.nan], 'b':[np.nan,1,np.nan]})
# Check whether there are null values in columns
null_columns = df.columns[df.isnull().any()]
print(df[null_columns].isnull().sum())
# One can follow along further per the cited article
你可以从非nan值的计数中减去总长度:
count_nan = len(df) - df.count()
你应该根据你的数据计算时间。与isnull解相比,小级数的速度提高了3倍。
df.isnull().sum()
//type: <class 'pandas.core.series.Series'>
or
df.column_name.isnull().sum()
//type: <type 'numpy.int64'>