这是我想做的:

我定期用网络摄像头拍照。就像时间流逝一样。然而,如果没有什么真正的改变,也就是说,图片看起来几乎相同,我不想存储最新的快照。

我想有某种方法可以量化这种差异,我必须根据经验确定一个阈值。

我追求的是简单而不是完美。 我用的是python。


当前回答

I have been having a lot of luck with jpg images taken with the same camera on a tripod by (1) simplifying greatly (like going from 3000 pixels wide to 100 pixels wide or even fewer) (2) flattening each jpg array into a single vector (3) pairwise correlating sequential images with a simple correlate algorithm to get correlation coefficient (4) squaring correlation coefficient to get r-square (i.e fraction of variability in one image explained by variation in the next) (5) generally in my application if r-square < 0.9, I say the two images are different and something happened in between.

这是强大的和快速的在我的实现(Mathematica 7)

这是值得玩转的部分,你感兴趣的图像,并通过裁剪所有的图像到那个小区域,否则一个远离相机但重要的变化将被错过。

我不知道如何使用Python,但我确信它也有相关性,不是吗?

其他回答

一个简单的解决方案:

将图像编码为jpeg格式,并寻找文件大小的实质性变化。

我曾经用视频缩略图实现过类似的东西,并且取得了很大的成功和可伸缩性。

我在工作中遇到了类似的问题,我正在重写我们的图像转换端点,我想检查新版本是否与旧版本产生相同或几乎相同的输出。所以我写了这个:

https://github.com/nicolashahn/diffimg

它对相同大小的图像进行操作,并在每个像素级别上测量每个通道的值的差异:R, G, B(, a),取这些通道的平均差值,然后对所有像素的差值进行平均,并返回一个比率。

例如,有一张10x10的白色像素的图像,而同一张图像只有一个像素变成了红色,该像素处的差异是1/3或0.33……(RGB 0,0,0 vs 255,0,0)并且在所有其他像素为0。总共100像素,0.33…/100 =一个~0.33%的图像差异。

我相信这将非常适合OP的项目(我意识到这是一个非常老的帖子,但张贴为未来的StackOverflowers谁也想用python比较图像)。

给出的大多数答案都不涉及照明水平。

在进行比较之前,我首先将图像归一化到标准的光照水平。

我认为你可以简单地计算两幅图像亮度之间的欧几里得距离(即平方根(像素对像素的差异平方和)),如果这低于某个经验阈值,就认为它们相等。你最好包装一个C函数。

推土机的距离可能正是你所需要的。 不过,要实时实现它可能有点重。