我真的很渴望开始使用谷歌在c++中的新Tensorflow库。网站和文档在如何构建项目的c++ API方面真的不清楚,我不知道从哪里开始。

是否有更有经验的人可以通过发现和分享使用tensorflow的c++ API的指南来帮助您?


当前回答

如果你不介意使用CMake,还有tensorflow_cc项目可以为你构建和安装TF c++ API,以及方便的CMake目标,你可以链接到它。项目README包含一个示例和Dockerfiles,您可以轻松地遵循。

其他回答

如果你希望避免使用Bazel构建项目和生成大型二进制文件,我已经组装了一个库,指导使用CMake TensorFlow c++库。你可以在这里找到它。总体思路如下:

克隆TensorFlow存储库。 在tensorflow/ build中添加一个构建规则(提供的规则不包括所有c++功能)。 构建TensorFlow共享库。 安装特定版本的Eigen和Protobuf,或将它们作为外部依赖项添加。 配置你的CMake项目来使用TensorFlow库。

我们现在在https://github.com/ika-rwth-aachen/libtensorflow_cc上提供了一个预构建的库和Docker镜像,方便TensorFlow c++ API的安装和使用

我们提供了预构建的libtensorflow_cc。因此,将附带的头文件作为一个命令安装deb-package。 我们提供了一个基于官方TensorFlow Docker镜像的预构建Docker镜像。我们的Docker镜像同时安装了TensorFlow Python和TensorFlow c++。

通过运行示例应用程序自己尝试一下:

git clone https://github.com/ika-rwth-aachen/libtensorflow_cc.git && \
cd libtensorflow_cc && \
docker run --rm \
    --volume $(pwd)/example:/example \
    --workdir /example \
    rwthika/tensorflow-cc:latest \
        ./build-and-run.sh

虽然我们目前只支持运行Ubuntu的x86_64机器,但将来可以很容易地扩展到其他操作系统和平台。除了一些例外,TensorFlow从2.0.0到2.9.2的所有版本都可用,2.10.0即将推出。

如果你想使用TensorFlow c++ API在c++中加载、检查和运行保存的模型和冻结的图形,我们建议你也检查我们的帮助库tensorflow_cpp。

Tensorflow本身只提供了关于c++ api的非常基本的示例。 这是一个很好的资源,包括数据集的例子,rnn, lstm, cnn等 Tensorflow c++的例子

我发现使用Tensorflow c++ API的一个替代方案是使用cppflow。

它是一个围绕Tensorflow C API的轻量级c++包装器。你得到非常小的可执行文件,它链接到libtensorflow。已经编译好的文件。还有一些使用的例子,您使用CMAKE而不是Bazel。

首先,您应该按照这里的说明从Github下载源代码(您需要Bazel和最新版本的GCC)。

The C++ API (and the backend of the system) is in tensorflow/core. Right now, only the C++ Session interface, and the C API are being supported. You can use either of these to execute TensorFlow graphs that have been built using the Python API and serialized to a GraphDef protocol buffer. There is also an experimental feature for building graphs in C++, but this is currently not quite as full-featured as the Python API (e.g. no support for auto-differentiation at present). You can see an example program that builds a small graph in C++ here.

c++ API的第二部分是用于添加新的OpKernel的API,这是一个包含CPU和GPU的数值内核实现的类。在tensorflow/core/kernels中有许多如何构建这些操作的示例,以及在c++中添加新操作的教程。