如何按键对字典进行排序?

示例输入:

{2:3, 1:89, 4:5, 3:0}

期望的输出:

{1:89, 2:3, 3:0, 4:5}

当前回答

如果你知道你所有的键都是相同的类型,或者有支持'< '(小于,python的__lt__)的类型,那么你可以使用dict(sorted(your_dict.items(), key=lambda _: _[0]))一个容易理解的一行程序

其他回答

有许多Python模块提供字典实现,这些字典自动按排序顺序维护键。考虑sortedcontainers模块,它是纯python和像c一样快的实现。此外,还会与其他受欢迎的选项进行性能比较。

如果您需要在迭代的同时不断地添加和删除键/值对,那么使用有序字典是一个不合适的解决方案。

>>> from sortedcontainers import SortedDict
>>> d = {2:3, 1:89, 4:5, 3:0}
>>> s = SortedDict(d)
>>> s.items()
[(1, 89), (2, 3), (3, 0), (4, 5)]

SortedDict类型还支持索引位置查找和删除,这在内置dict类型中是不可能的。

>>> s.iloc[-1]
4
>>> del s.iloc[2]
>>> s.keys()
SortedSet([1, 2, 4])
from operator import itemgetter
# if you would like to play with multiple dictionaries then here you go:
# Three dictionaries that are composed of first name and last name.
user = [
    {'fname': 'Mo', 'lname': 'Mahjoub'},
    {'fname': 'Abdo', 'lname': 'Al-hebashi'},
    {'fname': 'Ali', 'lname': 'Muhammad'}
]
#  This loop will sort by the first and the last names.
# notice that in a dictionary order doesn't matter. So it could put the first name first or the last name first. 
for k in sorted (user, key=itemgetter ('fname', 'lname')):
    print (k)

# This one will sort by the first name only.
for x in sorted (user, key=itemgetter ('fname')):
    print (x)

或者用熊猫,

演示:

>>> d={'B':1,'A':2,'C':3}
>>> df=pd.DataFrame(d,index=[0]).sort_index(axis=1)
   A  B  C
0  2  1  3
>>> df.to_dict('int')[0]
{'A': 2, 'B': 1, 'C': 3}
>>> 

See:

这方面的文档 整只熊猫的记录

以下是建议解决方案的性能:

from collections import OrderedDict
from sortedcontainers import SortedDict
import json

keys = np.random.rand(100000)
vals = np.random.rand(100000)

d = dict(zip(keys, vals))

timeit SortedDict(d)
#45.8 ms ± 780 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit sorted(d.items())
#91.9 ms ± 707 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit OrderedDict(sorted(d.items(), key=lambda x: x[0]))
#93.7 ms ± 1.52 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit dict(sorted(dic.items()))
#113 ms ± 824 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit OrderedDict(sorted(dic.items()))
#122 ms ± 2.65 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

timeit json.dumps(d, sort_keys=True)
#259 ms ± 9.42 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

如我们所见,格兰特·詹克斯的解决方案是目前为止最快的。

对于CPython/PyPy 3.6,以及任何Python 3.7或更高版本,这很容易做到:

>>> d = {2:3, 1:89, 4:5, 3:0}
>>> dict(sorted(d.items()))
{1: 89, 2: 3, 3: 0, 4: 5}