众所周知,由于舍入和精度问题,比较浮点数是否相等有点棘手。
例如:比较浮点数,2012版
在Python中处理这个问题的推荐方法是什么?
有标准的库函数吗?
众所周知,由于舍入和精度问题,比较浮点数是否相等有点棘手。
例如:比较浮点数,2012版
在Python中处理这个问题的推荐方法是什么?
有标准的库函数吗?
当前回答
这可能是一个有点丑陋的hack,但当你不需要超过默认的浮点精度(大约11个小数)时,它工作得很好。
round_to函数使用内置str类中的format方法将浮点数四舍五入为表示浮点数的字符串,其中包含所需的小数数,然后将eval内置函数应用于四舍五入的浮点数字符串,以返回浮点数字类型。
is_close函数只是对四舍五入的浮点数应用一个简单的条件。
def round_to(float_num, prec):
return eval("'{:." + str(int(prec)) + "f}'.format(" + str(float_num) + ")")
def is_close(float_a, float_b, prec):
if round_to(float_a, prec) == round_to(float_b, prec):
return True
return False
>>>a = 10.0
10.0
>>>b = 10.0001
10.0001
>>>print is_close(a, b, prec=3)
True
>>>print is_close(a, b, prec=4)
False
更新:
正如@stepehjfox所建议的,构建一个避免“eval”的rount_to函数的更干净的方法是使用嵌套格式:
def round_to(float_num, prec):
return '{:.{precision}f}'.format(float_num, precision=prec)
遵循同样的思想,使用新的f-string (Python 3.6+)代码可以更简单:
def round_to(float_num, prec):
return f'{float_num:.{prec}f}'
所以,我们甚至可以用一个简单干净的'is_close'函数来概括它:
def is_close(a, b, prec):
return f'{a:.{prec}f}' == f'{b:.{prec}f}'
其他回答
math.isclose()已为此添加到Python 3.5(源代码)。这里是它到Python 2的一个端口。它与Mark Ransom的单行程序的不同之处在于它可以正确地处理“inf”和“-inf”。
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
'''
Python 2 implementation of Python 3.5 math.isclose()
https://github.com/python/cpython/blob/v3.5.10/Modules/mathmodule.c#L1993
'''
# sanity check on the inputs
if rel_tol < 0 or abs_tol < 0:
raise ValueError("tolerances must be non-negative")
# short circuit exact equality -- needed to catch two infinities of
# the same sign. And perhaps speeds things up a bit sometimes.
if a == b:
return True
# This catches the case of two infinities of opposite sign, or
# one infinity and one finite number. Two infinities of opposite
# sign would otherwise have an infinite relative tolerance.
# Two infinities of the same sign are caught by the equality check
# above.
if math.isinf(a) or math.isinf(b):
return False
# now do the regular computation
# this is essentially the "weak" test from the Boost library
diff = math.fabs(b - a)
result = (((diff <= math.fabs(rel_tol * b)) or
(diff <= math.fabs(rel_tol * a))) or
(diff <= abs_tol))
return result
I'm not aware of anything in the Python standard library (or elsewhere) that implements Dawson's AlmostEqual2sComplement function. If that's the sort of behaviour you want, you'll have to implement it yourself. (In which case, rather than using Dawson's clever bitwise hacks you'd probably do better to use more conventional tests of the form if abs(a-b) <= eps1*(abs(a)+abs(b)) + eps2 or similar. To get Dawson-like behaviour you might say something like if abs(a-b) <= eps*max(EPS,abs(a),abs(b)) for some small fixed EPS; this isn't exactly the same as Dawson, but it's similar in spirit.
这可能是一个有点丑陋的hack,但当你不需要超过默认的浮点精度(大约11个小数)时,它工作得很好。
round_to函数使用内置str类中的format方法将浮点数四舍五入为表示浮点数的字符串,其中包含所需的小数数,然后将eval内置函数应用于四舍五入的浮点数字符串,以返回浮点数字类型。
is_close函数只是对四舍五入的浮点数应用一个简单的条件。
def round_to(float_num, prec):
return eval("'{:." + str(int(prec)) + "f}'.format(" + str(float_num) + ")")
def is_close(float_a, float_b, prec):
if round_to(float_a, prec) == round_to(float_b, prec):
return True
return False
>>>a = 10.0
10.0
>>>b = 10.0001
10.0001
>>>print is_close(a, b, prec=3)
True
>>>print is_close(a, b, prec=4)
False
更新:
正如@stepehjfox所建议的,构建一个避免“eval”的rount_to函数的更干净的方法是使用嵌套格式:
def round_to(float_num, prec):
return '{:.{precision}f}'.format(float_num, precision=prec)
遵循同样的思想,使用新的f-string (Python 3.6+)代码可以更简单:
def round_to(float_num, prec):
return f'{float_num:.{prec}f}'
所以,我们甚至可以用一个简单干净的'is_close'函数来概括它:
def is_close(a, b, prec):
return f'{a:.{prec}f}' == f'{b:.{prec}f}'
我喜欢Sesquipedal的建议,但有修改(一个特殊的用例时,两个值都是0返回False)。在我的例子中,我使用的是Python 2.7,只使用了一个简单的函数:
if f1 ==0 and f2 == 0:
return True
else:
return abs(f1-f2) < tol*max(abs(f1),abs(f2))
Python 3.5增加了数学运算。Isclose和cmath。isclose函数如PEP 485所述。
如果您使用的是较早版本的Python,相应的函数在文档中给出。
def isclose(a, b, rel_tol=1e-09, abs_tol=0.0):
return abs(a-b) <= max(rel_tol * max(abs(a), abs(b)), abs_tol)
Rel_tol是一个相对容差,它乘以两个参数的大小中较大的一个;当值变大时,它们之间允许的差异也会变大,但仍然认为它们相等。
Abs_tol是在所有情况下按原样应用的绝对容差。如果差值小于这些公差中的任何一个,则认为值相等。