我总是记不住电话号码。我需要一个记忆规则。


当前回答

你会发现在二进制中Int32的最大值是11111111111111111111111111111111111111111 但以10为基数,你会发现它是2147483647或2^31-1或Int32。MaxValue

其他回答

不要把它看成一个大数字,试着把它分解,然后寻找相关的想法。例如:

斯诺克的最大击球次数为2次(最大击球次数为147次) 4年(48个月) 3年(36个月) 4年(48个月)

上述适用于最大的负数;正的是- 1。

也许上面的分类对你来说不会再令人难忘了(它并不令人兴奋!),但希望你能想出一些令人难忘的主意!

如果你能记住圆周率的整个数字,那么你要找的数字在圆周率的十进制数字1867996680到1867996689的位置

数字字符串2147483647出现在圆周率的十进制数字1,867,996,680。3.14......86181221809936452346214748364710527835665425671614…

来源:http://www.subidiom.com/pi/

2^(x+y) = 2^x * 2^y

2^10 ~ 1,000
2^20 ~ 1,000,000
2^30 ~ 1,000,000,000
2^40 ~ 1,000,000,000,000
(etc.)

2^1 = 2
2^2 = 4
2^3 = 8
2^4 = 16
2^5 = 32
2^6 = 64
2^7 = 128
2^8 = 256
2^9 = 512

2^31 (signed int max)等于2^30(约10亿)乘以2^1(2)也就是20亿。2^32等于2^30 * 2^2,大约是40亿。这种近似方法甚至可以精确到2^64左右(误差增长到15%左右)。

如果你需要一个确切的答案,那么你应该打开计算器。

方便的字对齐容量近似:

2^16 ~= 64千// uint16 2^32 ~= 40亿// uint32, IPv4, unixtime 2^64 ~= 16 quintillion(又名160亿billion或1600万trillion) // uint64, "bigint" 2^128 ~= 256quintillion quintillion(又名256trillion trillion万亿)// IPv6, GUID

好吧,除了笑话,如果你真的在寻找一个有用的记忆规则,有一个我经常用来记住大数字的规则。

你需要把你的数字分成3-4个数字,然后用手机键盘上的投影来直观地记住它们。更容易在图片上显示:

正如你所看到的,从现在开始你只需要记住3个形状,其中2个看起来像俄罗斯方块L,一个看起来像一个勾。这绝对比记忆一个10位数要容易得多。

当你需要回忆数字的时候,回忆一下数字的形状,想象一下手机键盘上的形状,然后投射到键盘上。也许一开始你必须看着键盘,但经过一点练习,你就会记住数字是从左上到右下的,这样你就能在脑海中简单地想象它了。

只要确保你记得形状的方向和每个形状中的数字数量(例如,在2147483647的例子中,我们有一个4位数的俄罗斯方块L和一个3位数的L)。

你可以使用这个技巧轻松地记住任何重要的数字(例如,我记得我的16位信用卡号码等)。

max_signed_32_bit_num = 1 << 31 - 1;  // alternatively ~(1 << 31)

编译器无论如何都应该优化它。

我更喜欢1 << 31 - 1

0x7fffffff因为你不需要计数fs

Unsigned (pow(2,31)) - 1,因为你不需要<math.h>