我总是记不住电话号码。我需要一个记忆规则。


当前回答

一般来说,你可以做一个简单的操作,它反映了Int32的本质,用1填充所有可用的位-这是你可以很容易地保存在你的内存中的东西。它在大多数语言中的工作方式基本相同,但我以Python为例:

max = 0
bits = [1] * 31 # Generate a "bit array" filled with 1's
for bit in bits:
    max = (max << 1) | bit
# max is now 2147483647

对于unsigned Int32,将其设置为32而不是31个1。

但因为有一些更冒险的方法,我开始考虑公式,只是为了好玩…

公式1(如果没有给出运算符,则将数字连在一起)

a = 4 b = 8 巴/ a ab-1 接 ab-a-b ab-1

Python quickcheck

a = 4
b = 8
ab = int('%d%d' % (a, b))
ba = int('%d%d' % (b, a))
'%d%d%d%d%d' % (ba/a, ab-1, ab, ab-a-b, ab-1)
# gives '2147483647'

公式2

X = 48 x / 2 - 3 x - 1 x x * 3/4 x - 1

Python quickcheck

x = 48
'%d%d%d%d%d' % (x/2-3, x-1, x, x*3/4, x-1) 
# gives '2147483647'

其他回答

什么意思?应该很容易记住它是2^32。 如果你想要一个规则来记住这个数字的值,一个方便的经验法则是在二进制和十进制之间转换:

2^10 ~ 1000

这意味着2^20 ~ 1,000,000

2^30 ~ 10亿

2^31的两倍大约是20亿,2^32的两倍是40亿。

这是对任何二进制数进行粗略估计的一种简单方法。二进制中的10个0变成十进制中的3个0。

2GB

(回答有最短长度限制吗?)

永远不要忘记任何类型的最大值:

如果它有32位,最大的可能值将是带有数字1的32位:

结果将是十进制的4294967295:

但是,由于也有负数的表示,4294967295除以2,得到2147483647。

因此,一个32位整数能够表示-2147483647到2147483647

这里有一个记忆2**31,减去1得到最大整数值的助记符。

a = 1, b = 2, c = 3 d = 4 = 5, f = 6 g = 7, 8 h = = 9

Boys And Dogs Go Duck Hunting, Come Friday Ducks Hide
2    1   4    7  4    8        3    6      4     8

我经常使用2到18的幂来记住它们,但即使是我也没有费心去记住2**31。根据需要计算或使用常数,或估计为2G太容易了。

请记住,2^(10*x)大约是10^(3*x) -您可能已经习惯了千字节/千字节等。那就是:

2^10 = 1024                ~= one thousand
2^20 = 1024^2 = 1048576    ~= one million
2^30 = 1024^3 = 1073741824 ~= one billion

由于int型使用31位(符号为+ ~1位),所以只需将2^30乘以2就可以得到大约20亿。对于使用32位的unsigned int,再次翻倍为40亿。当然,误差系数越大,但你不需要记住准确的值(如果你需要,你应该使用一个预定义的常量)。这个近似值足够好,可以用来注意到什么时候某样东西可能会危险地接近溢出。