在Python中,如何找到整数中的位数?
当前回答
科学记数法格式,去掉指数:
int("{:.5e}".format(1000000).split("e")[1]) + 1
我不知道速度如何,但很简单。
请注意小数点后的有效数位数(“5”在”。如果5e”将科学记数法的小数部分舍入到另一个数字,则可能会出现问题。我把它设得任意大,但可以反映出你所知道的最大数字的长度。
其他回答
一种快速的解决方案,它使用floor(log10(n))的自我修正实现,基于“更好的方法来计算整数n和b的log(n,b)的floor ?”
import math
def floor_log(n, b):
res = math.floor(math.log(n, b))
c = b**res
return res + (b*c <= n) - (c > n)
def num_digits(n):
return 1 if n == 0 else 1 + floor_log(abs(n), 10)
这非常快,只要n < 10**(2**52)(这非常非常大)就可以工作。
如果你想要一个整数的长度等于这个整数的位数,你总是可以把它转换成字符串,比如str(133),然后像len(str(123))一样找到它的长度。
正如其他答案所示,使用log10会导致大n的错误结果,而使用len(str(…))或手动循环会导致大n的性能变慢。Jodag的答案提供了一个非常好的替代方案,它只适用于可能会使您的计算机崩溃的整数,但我们可以做得更好,甚至更快(对于n足够小的数学。Log2保证是准确的),避免使用对数,而是使用二进制:
def num_digits(n: int) -> int:
assert n > 0
i = int(0.30102999566398114 * (n.bit_length() - 1)) + 1
return (10 ** i <= n) + i
让我们来分析一下。首先是奇怪的n.bit_length()。这将以二进制形式计算长度:
assert 4 == (0b1111).bit_length()
assert 8 == (0b1011_1000).bit_length()
assert 9 == (0b1_1011_1000).bit_length()
与对数不同,这对于整数来说既快速又精确。结果是,这个结果正好是(log2(n)) + 1。为了单独得到地板(log2(n)),我们减去1,因此n.bit_length() - 1。
接下来,我们乘以0.30102999566398114。这相当于log10(2)稍微舍入。这利用了对数规则,以便从地板(log2(n))计算地板(log10(n))的估计值。
现在,您可能想知道我们在这一点上可能有多差,因为尽管0.30102999566398114 * log2(n) ~ log10(n),但对于floor(0.30102999566398114 * floor(log2(n))) ~ floor(log10(n)),情况并非如此。回想一下x - 1 < floor(x) <= x,我们可以做一些快速的计算:
log2(n) - 1 < floor(log2(n)) <= log2(n)
log10(n) - 0.30102999566398114 < 0.30102999566398114 * floor(log2(n)) <= log10(n)
floor(log10(n) - 0.30102999566398114) < floor(0.30102999566398114 * floor(log2(n))) <= floor(log10(n))
请注意,floor(log10(n) - 0.30102999566398114)至少是floor(log10(n)) - 1,这意味着我们与结果最多相差1。这是最后的修正,我们检查10 ** i <= n,当结果太小时导致额外的1 +,当结果刚刚好时导致0 +。
类似于Jodag的答案,这种方法实际上对非常非常大的n无效,大约在10 ** 2 ** 52左右,其中i的误差超过-1。然而,这种大小的整数可能会使您的计算机崩溃,所以这应该足够了。
正如亲爱的用户@Calvintwr提到的,函数数学。Log10在一个超出范围[-999999999999997,99999999999999997]的数字中有问题,我们会得到浮点数错误。我有这个问题与JavaScript(谷歌V8和NodeJS)和C (GNU GCC编译器),所以一个“纯数学”的解决方案是不可能在这里。
基于这个要点和答案,亲爱的用户@Calvintwr
import math
def get_count_digits(number: int):
"""Return number of digits in a number."""
if number == 0:
return 1
number = abs(number)
if number <= 999999999999997:
return math.floor(math.log10(number)) + 1
count = 0
while number:
count += 1
number //= 10
return count
我在长度不超过20(包括20)的数字上进行了测试,没问题。它必须足够,因为64位系统上的最大整数长度是19 (len(str(sys.maxsize)) == 19)。
assert get_count_digits(-99999999999999999999) == 20
assert get_count_digits(-10000000000000000000) == 20
assert get_count_digits(-9999999999999999999) == 19
assert get_count_digits(-1000000000000000000) == 19
assert get_count_digits(-999999999999999999) == 18
assert get_count_digits(-100000000000000000) == 18
assert get_count_digits(-99999999999999999) == 17
assert get_count_digits(-10000000000000000) == 17
assert get_count_digits(-9999999999999999) == 16
assert get_count_digits(-1000000000000000) == 16
assert get_count_digits(-999999999999999) == 15
assert get_count_digits(-100000000000000) == 15
assert get_count_digits(-99999999999999) == 14
assert get_count_digits(-10000000000000) == 14
assert get_count_digits(-9999999999999) == 13
assert get_count_digits(-1000000000000) == 13
assert get_count_digits(-999999999999) == 12
assert get_count_digits(-100000000000) == 12
assert get_count_digits(-99999999999) == 11
assert get_count_digits(-10000000000) == 11
assert get_count_digits(-9999999999) == 10
assert get_count_digits(-1000000000) == 10
assert get_count_digits(-999999999) == 9
assert get_count_digits(-100000000) == 9
assert get_count_digits(-99999999) == 8
assert get_count_digits(-10000000) == 8
assert get_count_digits(-9999999) == 7
assert get_count_digits(-1000000) == 7
assert get_count_digits(-999999) == 6
assert get_count_digits(-100000) == 6
assert get_count_digits(-99999) == 5
assert get_count_digits(-10000) == 5
assert get_count_digits(-9999) == 4
assert get_count_digits(-1000) == 4
assert get_count_digits(-999) == 3
assert get_count_digits(-100) == 3
assert get_count_digits(-99) == 2
assert get_count_digits(-10) == 2
assert get_count_digits(-9) == 1
assert get_count_digits(-1) == 1
assert get_count_digits(0) == 1
assert get_count_digits(1) == 1
assert get_count_digits(9) == 1
assert get_count_digits(10) == 2
assert get_count_digits(99) == 2
assert get_count_digits(100) == 3
assert get_count_digits(999) == 3
assert get_count_digits(1000) == 4
assert get_count_digits(9999) == 4
assert get_count_digits(10000) == 5
assert get_count_digits(99999) == 5
assert get_count_digits(100000) == 6
assert get_count_digits(999999) == 6
assert get_count_digits(1000000) == 7
assert get_count_digits(9999999) == 7
assert get_count_digits(10000000) == 8
assert get_count_digits(99999999) == 8
assert get_count_digits(100000000) == 9
assert get_count_digits(999999999) == 9
assert get_count_digits(1000000000) == 10
assert get_count_digits(9999999999) == 10
assert get_count_digits(10000000000) == 11
assert get_count_digits(99999999999) == 11
assert get_count_digits(100000000000) == 12
assert get_count_digits(999999999999) == 12
assert get_count_digits(1000000000000) == 13
assert get_count_digits(9999999999999) == 13
assert get_count_digits(10000000000000) == 14
assert get_count_digits(99999999999999) == 14
assert get_count_digits(100000000000000) == 15
assert get_count_digits(999999999999999) == 15
assert get_count_digits(1000000000000000) == 16
assert get_count_digits(9999999999999999) == 16
assert get_count_digits(10000000000000000) == 17
assert get_count_digits(99999999999999999) == 17
assert get_count_digits(100000000000000000) == 18
assert get_count_digits(999999999999999999) == 18
assert get_count_digits(1000000000000000000) == 19
assert get_count_digits(9999999999999999999) == 19
assert get_count_digits(10000000000000000000) == 20
assert get_count_digits(99999999999999999999) == 20
所有使用Python 3.5测试的代码示例
def digits(n)
count = 0
if n == 0:
return 1
if n < 0:
n *= -1
while (n >= 10**count):
count += 1
n += n%10
return count
print(digits(25)) # Should print 2
print(digits(144)) # Should print 3
print(digits(1000)) # Should print 4
print(digits(0)) # Should print 1