我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
我有一个数据帧和一些列有NA值。
我如何将这些NA值替换为零?
当前回答
在data.frame中,不需要通过突变来创建新列。
library(tidyverse)
k <- c(1,2,80,NA,NA,51)
j <- c(NA,NA,3,31,12,NA)
df <- data.frame(k,j)%>%
replace_na(list(j=0))#convert only column j, for example
结果
k j
1 0
2 0
80 3
NA 31
NA 12
51 0
其他回答
见我在@gsk3 answer中的评论。举个简单的例子:
> m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
> d <- as.data.frame(m)
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 3 NA 3 7 6 6 10 6 5
2 9 8 9 5 10 NA 2 1 7 2
3 1 1 6 3 6 NA 1 4 1 6
4 NA 4 NA 7 10 2 NA 4 1 8
5 1 2 4 NA 2 6 2 6 7 4
6 NA 3 NA NA 10 2 1 10 8 4
7 4 4 9 10 9 8 9 4 10 NA
8 5 8 3 2 1 4 5 9 4 7
9 3 9 10 1 9 9 10 5 3 3
10 4 2 2 5 NA 9 7 2 5 5
> d[is.na(d)] <- 0
> d
V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
1 4 3 0 3 7 6 6 10 6 5
2 9 8 9 5 10 0 2 1 7 2
3 1 1 6 3 6 0 1 4 1 6
4 0 4 0 7 10 2 0 4 1 8
5 1 2 4 0 2 6 2 6 7 4
6 0 3 0 0 10 2 1 10 8 4
7 4 4 9 10 9 8 9 4 10 0
8 5 8 3 2 1 4 5 9 4 7
9 3 9 10 1 9 9 10 5 3 3
10 4 2 2 5 0 9 7 2 5 5
没有必要去申请。=)
EDIT
你也应该看看norm package。它有很多很好的缺失数据分析功能。=)
这是一个更灵活的解决方案。不管你的数据帧有多大,它都能工作,或者用0或0来表示0。
library(dplyr) # make sure dplyr ver is >= 1.00
df %>%
mutate(across(everything(), na_if, 0)) # if 0 is indicated by `zero` then replace `0` with `zero`
专用函数nafill和setnafill,用于此目的,在data.table中。 只要可用,它们就将列分发到多个线程上进行计算。
library(data.table)
ans_df <- nafill(df, fill=0)
# or even faster, in-place
setnafill(df, fill=0)
另一个选项使用sapply将所有NA替换为零。下面是一些可重复的代码(数据来自@aL3xa):
set.seed(7) # for reproducibility
m <- matrix(sample(c(NA, 1:10), 100, replace = TRUE), 10)
d <- as.data.frame(m)
d
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1 9 7 5 5 7 7 4 6 6 7
#> 2 2 5 10 7 8 9 8 8 1 8
#> 3 6 7 4 10 4 9 6 8 NA 10
#> 4 1 10 3 7 5 7 7 7 NA 8
#> 5 9 9 10 NA 7 10 1 5 NA 5
#> 6 5 2 5 10 8 1 1 5 10 3
#> 7 7 3 9 3 1 6 7 3 1 10
#> 8 7 7 6 8 4 4 5 NA 8 7
#> 9 2 1 1 2 7 5 9 10 9 3
#> 10 7 5 3 4 9 2 7 6 NA 5
d[sapply(d, \(x) is.na(x))] <- 0
d
#> V1 V2 V3 V4 V5 V6 V7 V8 V9 V10
#> 1 9 7 5 5 7 7 4 6 6 7
#> 2 2 5 10 7 8 9 8 8 1 8
#> 3 6 7 4 10 4 9 6 8 0 10
#> 4 1 10 3 7 5 7 7 7 0 8
#> 5 9 9 10 0 7 10 1 5 0 5
#> 6 5 2 5 10 8 1 1 5 10 3
#> 7 7 3 9 3 1 6 7 3 1 10
#> 8 7 7 6 8 4 4 5 0 8 7
#> 9 2 1 1 2 7 5 9 10 9 3
#> 10 7 5 3 4 9 2 7 6 0 5
使用reprex v2.0.2创建于2023-01-15
请注意:从R 4.1.0开始,您可以使用\(x)而不是函数(x)。
这并不是一个新的解决方案,但是我喜欢编写内联lambdas来处理我无法让包完成的事情。在这种情况下,
df %>%
(function(x) { x[is.na(x)] <- 0; return(x) })
因为R不像你在Python中可能看到的那样“通过对象传递”,所以这个解决方案不会修改原始变量df,因此与大多数其他解决方案一样,但是不需要对特定包的复杂知识有太多的要求。
注意函数定义周围的括号!虽然对我来说这似乎有点多余,因为函数定义是用花括号括起来的,但对于magrittr,需要在括号内定义内联函数。