虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:

class Immutable(tuple):
    
    def __new__(cls, a, b):
        return tuple.__new__(cls, (a, b))

    @property
    def a(self):
        return self[0]
        
    @property
    def b(self):
        return self[1]

    def __str__(self):
        return "<Immutable {0}, {1}>".format(self.a, self.b)
    
    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。

这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?

(只能在python3中工作的答案是可以接受的)。

更新:

从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。


当前回答

另一个想法是完全不允许__setattr__而使用object。构造函数中的__setattr__:

class Point(object):
    def __init__(self, x, y):
        object.__setattr__(self, "x", x)
        object.__setattr__(self, "y", y)
    def __setattr__(self, *args):
        raise TypeError
    def __delattr__(self, *args):
        raise TypeError

当然你可以用object。__setattr__(p, "x", 3)来修改一个Point实例p,但您的原始实现遭受同样的问题(尝试tuple。__setattr__(i, "x", 42)在一个不可变实例)。

您可以在原始实现中应用相同的技巧:去掉__getitem__(),并在属性函数中使用tuple.__getitem__()。

其他回答

如果您对具有行为的对象感兴趣,那么namedtuple几乎是您的解决方案。

正如namedtuple文档底部所描述的,您可以从namedtuple派生自己的类;然后,你可以添加你想要的行为。

例如(代码直接取自文档):

class Point(namedtuple('Point', 'x y')):
    __slots__ = ()
    @property
    def hypot(self):
        return (self.x ** 2 + self.y ** 2) ** 0.5
    def __str__(self):
        return 'Point: x=%6.3f  y=%6.3f  hypot=%6.3f' % (self.x, self.y, self.hypot)

for p in Point(3, 4), Point(14, 5/7):
    print(p)

这将导致:

Point: x= 3.000  y= 4.000  hypot= 5.000
Point: x=14.000  y= 0.714  hypot=14.018

这种方法适用于Python 3和Python 2.7(在IronPython上也进行了测试)。 唯一的缺点是继承树有点奇怪;但这不是你经常玩的东西。

您可以覆盖setattr,仍然使用init来设置变量。你可以使用超类setattr。这是代码。

class Immutable:
    __slots__ = ('a','b')
    def __init__(self, a , b):
        super().__setattr__('a',a)
        super().__setattr__('b',b)

    def __str__(self):
        return "".format(self.a, self.b)

    def __setattr__(self, *ignored):
        raise NotImplementedError

    def __delattr__(self, *ignored):
        raise NotImplementedError

你可以创建一个@immutable装饰器,它覆盖__setattr__并将__slots__更改为一个空列表,然后用它装饰__init__方法。

编辑:正如OP所指出的,改变__slots__属性只会阻止新属性的创建,而不会阻止修改。

Edit2:下面是一个实现:

Edit3:使用__slots__会破坏这段代码,因为if会停止对象__dict__的创建。我正在寻找替代方案。

Edit4:嗯,就是这样。这是一个很粗鄙的问题,但可以作为练习:-)

class immutable(object):
    def __init__(self, immutable_params):
        self.immutable_params = immutable_params

    def __call__(self, new):
        params = self.immutable_params

        def __set_if_unset__(self, name, value):
            if name in self.__dict__:
                raise Exception("Attribute %s has already been set" % name)

            if not name in params:
                raise Exception("Cannot create atribute %s" % name)

            self.__dict__[name] = value;

        def __new__(cls, *args, **kws):
            cls.__setattr__ = __set_if_unset__

            return super(cls.__class__, cls).__new__(cls, *args, **kws)

        return __new__

class Point(object):
    @immutable(['x', 'y'])
    def __new__(): pass

    def __init__(self, x, y):
        self.x = x
        self.y = y

p = Point(1, 2) 
p.x = 3 # Exception: Attribute x has already been set
p.z = 4 # Exception: Cannot create atribute z

..如何在C中“正确地”做这件事?

你可以使用Cython为Python创建一个扩展类型:

cdef class Immutable:
    cdef readonly object a, b
    cdef object __weakref__ # enable weak referencing support

    def __init__(self, a, b):
        self.a, self.b = a, b

它既适用于Python 2。X和3。

测试

# compile on-the-fly
import pyximport; pyximport.install() # $ pip install cython
from immutable import Immutable

o = Immutable(1, 2)
assert o.a == 1, str(o.a)
assert o.b == 2

try: o.a = 3
except AttributeError:
    pass
else:
    assert 0, 'attribute must be readonly'

try: o[1]
except TypeError:
    pass
else:
    assert 0, 'indexing must not be supported'

try: o.c = 1
except AttributeError:
    pass
else:
    assert 0, 'no new attributes are allowed'

o = Immutable('a', [])
assert o.a == 'a'
assert o.b == []

o.b.append(3) # attribute may contain mutable object
assert o.b == [3]

try: o.c
except AttributeError:
    pass
else:
    assert 0, 'no c attribute'

o = Immutable(b=3,a=1)
assert o.a == 1 and o.b == 3

try: del o.b
except AttributeError:
    pass
else:
    assert 0, "can't delete attribute"

d = dict(b=3, a=1)
o = Immutable(**d)
assert o.a == d['a'] and o.b == d['b']

o = Immutable(1,b=3)
assert o.a == 1 and o.b == 3

try: object.__setattr__(o, 'a', 1)
except AttributeError:
    pass
else:
    assert 0, 'attributes are readonly'

try: object.__setattr__(o, 'c', 1)
except AttributeError:
    pass
else:
    assert 0, 'no new attributes'

try: Immutable(1,c=3)
except TypeError:
    pass
else:
    assert 0, 'accept only a,b keywords'

for kwd in [dict(a=1), dict(b=2)]:
    try: Immutable(**kwd)
    except TypeError:
        pass
    else:
        assert 0, 'Immutable requires exactly 2 arguments'

如果你不介意索引支持,那么@Sven Marnach建议的collections.namedtuple是更可取的:

Immutable = collections.namedtuple("Immutable", "a b")

下面的基本解决方案针对以下场景:

__init__()可以像往常一样访问属性。 在此之后,对象仅冻结属性更改:

其思想是覆盖__setattr__方法,并在每次对象冻结状态改变时替换其实现。

因此,我们需要一些方法(_freeze)来存储这两个实现,并在请求时在它们之间切换。

这个机制可以在用户类内部实现,也可以从一个特殊的freeze类继承,如下所示:

class Freezer:
    def _freeze(self, do_freeze=True):
        def raise_sa(*args):            
            raise AttributeError("Attributes are frozen and can not be changed!")
        super().__setattr__('_active_setattr', (super().__setattr__, raise_sa)[do_freeze])

    def __setattr__(self, key, value):        
        return self._active_setattr(key, value)

class A(Freezer):    
    def __init__(self):
        self._freeze(False)
        self.x = 10
        self._freeze()