虽然我从来都不需要这样做,但我突然意识到用Python创建一个不可变对象可能有点棘手。你不能只是覆盖__setattr__,因为这样你甚至不能在__init__中设置属性。子类化一个元组是一个有效的技巧:
class Immutable(tuple):
def __new__(cls, a, b):
return tuple.__new__(cls, (a, b))
@property
def a(self):
return self[0]
@property
def b(self):
return self[1]
def __str__(self):
return "<Immutable {0}, {1}>".format(self.a, self.b)
def __setattr__(self, *ignored):
raise NotImplementedError
def __delattr__(self, *ignored):
raise NotImplementedError
但是你可以通过self[0]和self[1]访问a和b变量,这很烦人。
这在Pure Python中可行吗?如果不是,我该如何用C扩展来做呢?
(只能在python3中工作的答案是可以接受的)。
更新:
从Python 3.7开始,要使用的方法是使用@dataclass装饰器,参见最新接受的答案。
除了其他优秀的答案之外,我喜欢为python 3.4(或者可能是3.3)添加一个方法。这个答案建立在之前对这个问题的几个答案的基础上。
在python 3.4中,可以使用不带设置符的属性来创建不可修改的类成员。(在早期版本中,可以不使用setter为属性赋值。)
class A:
__slots__=['_A__a']
def __init__(self, aValue):
self.__a=aValue
@property
def a(self):
return self.__a
你可以这样使用它:
instance=A("constant")
print (instance.a)
它会输出constant
而是调用实例。A =10会导致:
AttributeError: can't set attribute
解释:不带设置符的属性是python 3.4(我认为是3.3)的最新特性。如果您尝试给这样的属性赋值,则会引发Error。
使用插槽,我将成员变量限制为__A_a(即__a)。
问题:赋值给_aa仍然是可能的(instance. _aa =2)。但是如果你给一个私有变量赋值,那是你自己的错…
然而,这个答案不鼓励使用__slots__。使用其他方法来阻止属性创建可能更可取。
使用冻结的数据类
对于Python 3.7+,你可以使用带frozen=True选项的数据类,这是一种非常Python化和可维护的方式来做你想做的事情。
它看起来是这样的:
from dataclasses import dataclass
@dataclass(frozen=True)
class Immutable:
a: Any
b: Any
由于数据类的字段需要类型提示,所以我使用了typing模块中的Any。
不使用命名元组的原因
在Python 3.7之前,经常可以看到命名元组被用作不可变对象。它在很多方面都很棘手,其中之一是命名元组之间的__eq__方法不考虑对象的类。例如:
from collections import namedtuple
ImmutableTuple = namedtuple("ImmutableTuple", ["a", "b"])
ImmutableTuple2 = namedtuple("ImmutableTuple2", ["a", "c"])
obj1 = ImmutableTuple(a=1, b=2)
obj2 = ImmutableTuple2(a=1, c=2)
obj1 == obj2 # will be True
如你所见,即使obj1和obj2的类型不同,即使它们的字段名称不同,obj1 == obj2仍然给出True。这是因为使用的__eq__方法是元组的方法,它只比较给定位置的字段的值。这可能是一个巨大的错误来源,特别是如果您是子类化这些类。
你可以创建一个@immutable装饰器,它覆盖__setattr__并将__slots__更改为一个空列表,然后用它装饰__init__方法。
编辑:正如OP所指出的,改变__slots__属性只会阻止新属性的创建,而不会阻止修改。
Edit2:下面是一个实现:
Edit3:使用__slots__会破坏这段代码,因为if会停止对象__dict__的创建。我正在寻找替代方案。
Edit4:嗯,就是这样。这是一个很粗鄙的问题,但可以作为练习:-)
class immutable(object):
def __init__(self, immutable_params):
self.immutable_params = immutable_params
def __call__(self, new):
params = self.immutable_params
def __set_if_unset__(self, name, value):
if name in self.__dict__:
raise Exception("Attribute %s has already been set" % name)
if not name in params:
raise Exception("Cannot create atribute %s" % name)
self.__dict__[name] = value;
def __new__(cls, *args, **kws):
cls.__setattr__ = __set_if_unset__
return super(cls.__class__, cls).__new__(cls, *args, **kws)
return __new__
class Point(object):
@immutable(['x', 'y'])
def __new__(): pass
def __init__(self, x, y):
self.x = x
self.y = y
p = Point(1, 2)
p.x = 3 # Exception: Attribute x has already been set
p.z = 4 # Exception: Cannot create atribute z
这里没有包括的是完全不可变性……不仅仅是父对象,还有所有的子对象。例如,元组/frozensets可能是不可变的,但它所属的对象可能不是。下面是一个小的(不完整的)版本,它在执行不变性方面做得很好:
# Initialize lists
a = [1,2,3]
b = [4,5,6]
c = [7,8,9]
l = [a,b]
# We can reassign in a list
l[0] = c
# But not a tuple
t = (a,b)
#t[0] = c -> Throws exception
# But elements can be modified
t[0][1] = 4
t
([1, 4, 3], [4, 5, 6])
# Fix it back
t[0][1] = 2
li = ImmutableObject(l)
li
[[1, 2, 3], [4, 5, 6]]
# Can't assign
#li[0] = c will fail
# Can reference
li[0]
[1, 2, 3]
# But immutability conferred on returned object too
#li[0][1] = 4 will throw an exception
# Full solution should wrap all the comparison e.g. decorators.
# Also, you'd usually want to add a hash function, i didn't put
# an interface for that.
class ImmutableObject(object):
def __init__(self, inobj):
self._inited = False
self._inobj = inobj
self._inited = True
def __repr__(self):
return self._inobj.__repr__()
def __str__(self):
return self._inobj.__str__()
def __getitem__(self, key):
return ImmutableObject(self._inobj.__getitem__(key))
def __iter__(self):
return self._inobj.__iter__()
def __setitem__(self, key, value):
raise AttributeError, 'Object is read-only'
def __getattr__(self, key):
x = getattr(self._inobj, key)
if callable(x):
return x
else:
return ImmutableObject(x)
def __hash__(self):
return self._inobj.__hash__()
def __eq__(self, second):
return self._inobj.__eq__(second)
def __setattr__(self, attr, value):
if attr not in ['_inobj', '_inited'] and self._inited == True:
raise AttributeError, 'Object is read-only'
object.__setattr__(self, attr, value)
除了其他优秀的答案之外,我喜欢为python 3.4(或者可能是3.3)添加一个方法。这个答案建立在之前对这个问题的几个答案的基础上。
在python 3.4中,可以使用不带设置符的属性来创建不可修改的类成员。(在早期版本中,可以不使用setter为属性赋值。)
class A:
__slots__=['_A__a']
def __init__(self, aValue):
self.__a=aValue
@property
def a(self):
return self.__a
你可以这样使用它:
instance=A("constant")
print (instance.a)
它会输出constant
而是调用实例。A =10会导致:
AttributeError: can't set attribute
解释:不带设置符的属性是python 3.4(我认为是3.3)的最新特性。如果您尝试给这样的属性赋值,则会引发Error。
使用插槽,我将成员变量限制为__A_a(即__a)。
问题:赋值给_aa仍然是可能的(instance. _aa =2)。但是如果你给一个私有变量赋值,那是你自己的错…
然而,这个答案不鼓励使用__slots__。使用其他方法来阻止属性创建可能更可取。
从Python 3.7开始,你可以在你的类中使用@dataclass装饰器,它将像结构体一样是不可变的!不过,它可能会也可能不会将__hash__()方法添加到类中。引用:
hash() is used by built-in hash(), and when objects are added to hashed collections such as dictionaries and sets. Having a hash() implies that instances of the class are immutable. Mutability is a complicated property that depends on the programmer’s intent, the existence and behavior of eq(), and the values of the eq and frozen flags in the dataclass() decorator.
By default, dataclass() will not implicitly add a hash() method unless it is safe to do so. Neither will it add or change an existing explicitly defined hash() method. Setting the class attribute hash = None has a specific meaning to Python, as described in the hash() documentation.
If hash() is not explicit defined, or if it is set to None, then dataclass() may add an implicit hash() method. Although not recommended, you can force dataclass() to create a hash() method with unsafe_hash=True. This might be the case if your class is logically immutable but can nonetheless be mutated. This is a specialized use case and should be considered carefully.
下面是上面链接的文档中的例子:
@dataclass
class InventoryItem:
'''Class for keeping track of an item in inventory.'''
name: str
unit_price: float
quantity_on_hand: int = 0
def total_cost(self) -> float:
return self.unit_price * self.quantity_on_hand