我知道Python列表有一个方法可以返回某个对象的第一个索引:

>>> xs = [1, 2, 3]
>>> xs.index(2)
1

NumPy数组也有类似的东西吗?


当前回答

numpy_indexed包(免责声明,我是它的作者)包含一个向量化的等效list。ndarray的索引;那就是:

sequence_of_arrays = [[0, 1], [1, 2], [-5, 0]]
arrays_to_query = [[-5, 0], [1, 0]]

import numpy_indexed as npi
idx = npi.indices(sequence_of_arrays, arrays_to_query, missing=-1)
print(idx)   # [2, -1]

这个解决方案具有向量化的性能,可以推广到ndarray,并且有各种处理缺失值的方法。

其他回答

另一个之前没有提到的选项是bisect模块,它也适用于列表,但需要一个预先排序的列表/数组:

import bisect
import numpy as np
z = np.array([104,113,120,122,126,138])
bisect.bisect_left(z, 122)

收益率

3

Bisect还会在您要查找的数字在数组中不存在时返回一个结果,以便将该数字插入正确的位置。

对于1D数组,我推荐np。平坦非零(array == value)[0],它等价于np。非零(array == value)[0][0]和np。其中(array == value)[0][0],但避免了对一个单元素元组开箱的丑陋。

如果你只需要第一次出现一个值的索引,你可以使用nonzero(或where,在这种情况下相当于相同的东西):

>>> t = array([1, 1, 1, 2, 2, 3, 8, 3, 8, 8])
>>> nonzero(t == 8)
(array([6, 8, 9]),)
>>> nonzero(t == 8)[0][0]
6

如果需要多个值中的每个值的第一个索引,显然可以重复执行上述操作,但有一个技巧可能更快。下面的代码查找每个子序列的第一个元素的下标:

>>> nonzero(r_[1, diff(t)[:-1]])
(array([0, 3, 5, 6, 7, 8]),)

注意,它找到了3s的子序列和8s的子序列的开头:

[1, 1, 1, 2, 2, 3, 8, 3, 8, 8]

这和求每个值的第一次出现有点不同。在你的程序中,你可以使用t的排序版本来得到你想要的:

>>> st = sorted(t)
>>> nonzero(r_[1, diff(st)[:-1]])
(array([0, 3, 5, 7]),)

如果你想用它作为其他东西的索引,如果数组是可广播的,你可以使用布尔索引;不需要显式索引。要做到这一点,绝对最简单的方法是基于真值进行索引。

other_array[first_array == item]

任何布尔运算都可以:

a = numpy.arange(100)
other_array[first_array > 50]

非零方法也接受布尔值:

index = numpy.nonzero(first_array == item)[0][0]

两个0分别表示索引元组(假设first_array是1D)和索引数组中的第一项。

是的,给定一个数组,数组和一个值,要搜索的项,你可以使用np。的地方:

itemindex = numpy.where(array == item)

结果是一个元组,首先是所有的行索引,然后是所有的列索引。

例如,如果一个数组是二维的,它包含你的项目在两个位置,那么

array[itemindex[0][0]][itemindex[1][0]]

将等于你的项目,因此将是:

array[itemindex[0][1]][itemindex[1][1]]