我从CSV文件中加载了一些机器学习数据。前两列是观察结果,其余列是特征。

目前,我做以下事情:

data = pandas.read_csv('mydata.csv')

它会给出如下内容:

data = pandas.DataFrame(np.random.rand(10,5), columns = list('abcde'))

我想把这个数据帧切成两个数据帧:一个包含列a和b,一个包含列c, d和e。

不可能写出这样的东西

observations = data[:'c']
features = data['c':]

我不确定最好的方法是什么。我需要一个pd.Panel吗?

顺便说一下,我发现数据帧索引非常不一致:数据['a']是允许的,但数据[0]是不允许的。另一方面,数据['a':]是不允许的,但数据[0:]是允许的。 这有什么实际的原因吗?如果列以Int为索引,这真的很令人困惑,给定data[0] != data[0:1]


当前回答

另一种从你的DataFrame获取列的子集的方法,假设你想要所有的行,将是这样做: Data [['a','b']]和Data [['c','d','e']]] 如果你想使用数值列索引,你可以这样做: 数据(数据。Columns[:2]]和data[data. Columns [2:]]

其他回答

您可以使用截断方法

df = pd.DataFrame(np.random.rand(10, 5), columns = list('abcde'))

df_ab = df.truncate(before='a', after='b', axis=1)
df_cde = df.truncate(before='c', axis=1)

让我们以来自海运包的titanic数据集为例

# Load dataset (pip install seaborn)
>> import seaborn.apionly as sns
>> titanic = sns.load_dataset('titanic')

使用列名

>> titanic.loc[:,['sex','age','fare']]

使用列索引

>> titanic.iloc[:,[2,3,6]]

使用ix(比Pandas更老<。20版本)

>> titanic.ix[:,[‘sex’,’age’,’fare’]]

or

>> titanic.ix[:,[2,3,6]]

使用重索引方法

>> titanic.reindex(columns=['sex','age','fare'])

如果你来这里寻找两个范围的列切片并将它们组合在一起(像我一样),你可以做这样的事情

op = df[list(df.columns[0:899]) + list(df.columns[3593:])]
print op

这将创建一个具有前900列和(所有)列> 3593的新数据框架(假设您的数据集中有4000列)。

下面介绍如何使用不同的方法进行选择性列切片,包括基于选择标签的、基于索引的和基于选择范围的列切片。

In [37]: import pandas as pd    
In [38]: import numpy as np
In [43]: df = pd.DataFrame(np.random.rand(4,7), columns = list('abcdefg'))

In [44]: df
Out[44]: 
          a         b         c         d         e         f         g
0  0.409038  0.745497  0.890767  0.945890  0.014655  0.458070  0.786633
1  0.570642  0.181552  0.794599  0.036340  0.907011  0.655237  0.735268
2  0.568440  0.501638  0.186635  0.441445  0.703312  0.187447  0.604305
3  0.679125  0.642817  0.697628  0.391686  0.698381  0.936899  0.101806

In [45]: df.loc[:, ["a", "b", "c"]] ## label based selective column slicing 
Out[45]: 
          a         b         c
0  0.409038  0.745497  0.890767
1  0.570642  0.181552  0.794599
2  0.568440  0.501638  0.186635
3  0.679125  0.642817  0.697628

In [46]: df.loc[:, "a":"c"] ## label based column ranges slicing 
Out[46]: 
          a         b         c
0  0.409038  0.745497  0.890767
1  0.570642  0.181552  0.794599
2  0.568440  0.501638  0.186635
3  0.679125  0.642817  0.697628

In [47]: df.iloc[:, 0:3] ## index based column ranges slicing 
Out[47]: 
          a         b         c
0  0.409038  0.745497  0.890767
1  0.570642  0.181552  0.794599
2  0.568440  0.501638  0.186635
3  0.679125  0.642817  0.697628

### with 2 different column ranges, index based slicing: 
In [49]: df[df.columns[0:1].tolist() + df.columns[1:3].tolist()]
Out[49]: 
          a         b         c
0  0.409038  0.745497  0.890767
1  0.570642  0.181552  0.794599
2  0.568440  0.501638  0.186635
3  0.679125  0.642817  0.697628

另一种从你的DataFrame获取列的子集的方法,假设你想要所有的行,将是这样做: Data [['a','b']]和Data [['c','d','e']]] 如果你想使用数值列索引,你可以这样做: 数据(数据。Columns[:2]]和data[data. Columns [2:]]