这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

随着时间的推移,我收集了几个质数筛子。我电脑上最快的是这样的:

from time import time
# 175 ms for all the primes up to the value 10**6
def primes_sieve(limit):
    a = [True] * limit
    a[0] = a[1] = False
    #a[2] = True
    for n in xrange(4, limit, 2):
        a[n] = False
    root_limit = int(limit**.5)+1
    for i in xrange(3,root_limit):
        if a[i]:
            for n in xrange(i*i, limit, 2*i):
                a[n] = False
    return a

LIMIT = 10**6
s=time()
primes = primes_sieve(LIMIT)
print time()-s

其他回答

下面是一个使用python的列表推导式生成质数的有趣技术(但不是最有效的):

noprimes = [j for i in range(2, 8) for j in range(i*2, 50, i)]
primes = [x for x in range(2, 50) if x not in noprimes]

下面是我在Python中通常用来生成质数的代码:

$ python -mtimeit -s'import sieve' 'sieve.sieve(1000000)' 
10 loops, best of 3: 445 msec per loop
$ cat sieve.py
from math import sqrt

def sieve(size):
 prime=[True]*size
 rng=xrange
 limit=int(sqrt(size))

 for i in rng(3,limit+1,+2):
  if prime[i]:
   prime[i*i::+i]=[False]*len(prime[i*i::+i])

 return [2]+[i for i in rng(3,size,+2) if prime[i]]

if __name__=='__main__':
 print sieve(100)

它不能与这里发布的更快的解决方案竞争,但至少它是纯python。

谢谢你提出这个问题。我今天真的学到了很多东西。

很抱歉打扰,但erat2()在算法中有一个严重的缺陷。

在搜索下一个合成时,我们只需要测试奇数。 Q p都是奇数;那么q+p是偶数,不需要检验,但q+2*p总是奇数。这消除了while循环条件中的“if even”测试,并节省了大约30%的运行时。

当我们在它:而不是优雅的'D.pop(q,None)'获取和删除方法,使用'if q in D: p=D[q],del D[q]',这是两倍的速度!至少在我的机器上(P3-1Ghz)。 所以我建议这个聪明算法的实现:

def erat3( ):
    from itertools import islice, count

    # q is the running integer that's checked for primeness.
    # yield 2 and no other even number thereafter
    yield 2
    D = {}
    # no need to mark D[4] as we will test odd numbers only
    for q in islice(count(3),0,None,2):
        if q in D:                  #  is composite
            p = D[q]
            del D[q]
            # q is composite. p=D[q] is the first prime that
            # divides it. Since we've reached q, we no longer
            # need it in the map, but we'll mark the next
            # multiple of its witnesses to prepare for larger
            # numbers.
            x = q + p+p        # next odd(!) multiple
            while x in D:      # skip composites
                x += p+p
            D[x] = p
        else:                  # is prime
            # q is a new prime.
            # Yield it and mark its first multiple that isn't
            # already marked in previous iterations.
            D[q*q] = q
            yield q

如果你不想重新发明轮子,你可以安装符号数学库symphony(是的,它与Python 3兼容)

pip install sympy

然后使用质数函数

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

我猜最快的方法是在代码中硬编码质数。

因此,为什么不编写一个缓慢的脚本,生成另一个源文件,其中包含所有数字,然后在运行实际程序时导入该源文件呢?

当然,只有当你在编译时知道N的上限时,这才有效,但这是(几乎)所有项目欧拉问题的情况。

 

PS:我可能错了,虽然解析源的硬连接质数比计算它们要慢,但据我所知,Python是从编译的.pyc文件运行的,所以在这种情况下,读取一个包含所有质数到N的二进制数组应该是非常快的。