这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

你有一个更快的代码和最简单的代码生成质数。 但对于更大的数字,当n=10000, 10000000时,它不起作用,可能是。pop()方法失败了

考虑:N是质数吗?

case 1: You got some factors of N, for i in range(2, N): If N is prime loop is performed for ~(N-2) times. else less number of times case 2: for i in range(2, int(math.sqrt(N)): Loop is performed for almost ~(sqrt(N)-2) times if N is prime else will break somewhere case 3: Better We Divide N With Only number of primes<=sqrt(N) Where loop is performed for only π(sqrt(N)) times π(sqrt(N)) << sqrt(N) as N increases from math import sqrt from time import * prime_list = [2] n = int(input()) s = time() for n0 in range(2,n+1): for i0 in prime_list: if n0%i0==0: break elif i0>=int(sqrt(n0)): prime_list.append(n0) break e = time() print(e-s) #print(prime_list); print(f'pi({n})={len(prime_list)}') print(f'{n}: {len(prime_list)}, time: {e-s}') Output 100: 25, time: 0.00010275840759277344 1000: 168, time: 0.0008606910705566406 10000: 1229, time: 0.015588521957397461 100000: 9592, time: 0.023436546325683594 1000000: 78498, time: 4.1965954303741455 10000000: 664579, time: 109.24591708183289 100000000: 5761455, time: 2289.130858898163

小于1000似乎很慢,但小于10^6我认为更快。

然而,我无法理解时间的复杂性。

其他回答

对于Python 3

def rwh_primes2(n):
    correction = (n%6>1)
    n = {0:n,1:n-1,2:n+4,3:n+3,4:n+2,5:n+1}[n%6]
    sieve = [True] * (n//3)
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        sieve[      ((k*k)//3)      ::2*k]=[False]*((n//6-(k*k)//6-1)//k+1)
        sieve[(k*k+4*k-2*k*(i&1))//3::2*k]=[False]*((n//6-(k*k+4*k-2*k*(i&1))//6-1)//k+1)
    return [2,3] + [3*i+1|1 for i in range(1,n//3-correction) if sieve[i]]

我很惊讶居然没人提到numba。

该版本在2.47 ms±36.5µs内达到1M标记。

几年前,维基百科页面上出现了一个阿特金筛子的伪代码。这已经不存在了,参考阿特金筛似乎是一个不同的算法。一个2007/03/01版本的维基百科页面(Primer number as 2007-03-01)显示了我用作参考的伪代码。

import numpy as np
from numba import njit

@njit
def nb_primes(n):
    # Generates prime numbers 2 <= p <= n
    # Atkin's sieve -- see https://en.wikipedia.org/w/index.php?title=Prime_number&oldid=111775466
    sqrt_n = int(np.sqrt(n)) + 1

    # initialize the sieve
    s = np.full(n + 1, -1, dtype=np.int8)
    s[2] = 1
    s[3] = 1

    # put in candidate primes:
    # integers which have an odd number of
    # representations by certain quadratic forms
    for x in range(1, sqrt_n):
        x2 = x * x
        for y in range(1, sqrt_n):
            y2 = y * y
            k = 4 * x2 + y2
            if k <= n and (k % 12 == 1 or k % 12 == 5): s[k] *= -1
            k = 3 * x2 + y2
            if k <= n and (k % 12 == 7): s[k] *= -1
            k = 3 * x2 - y2
            if k <= n and x > y and k % 12 == 11: s[k] *= -1

    # eliminate composites by sieving
    for k in range(5, sqrt_n):
        if s[k]:
            k2 = k*k
            # k is prime, omit multiples of its square; this is sufficient because
            # composites which managed to get on the list cannot be square-free
            for i in range(1, n // k2 + 1):
                j = i * k2 # j ∈ {k², 2k², 3k², ..., n}
                s[j] = -1
    return np.nonzero(s>0)[0]

# initial run for "compilation" 
nb_primes(10)

时机

In[10]:
%timeit nb_primes(1_000_000)

Out[10]:
2.47 ms ± 36.5 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

In[11]:
%timeit nb_primes(10_000_000)

Out[11]:
33.4 ms ± 373 µs per loop (mean ± std. dev. of 7 runs, 10 loops each)

In[12]:
%timeit nb_primes(100_000_000)

Out[12]:
828 ms ± 5.64 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

这是问题解的一种变化应该比问题本身更快。它使用埃拉托色尼的静态筛,没有其他优化。

from typing import List

def list_primes(limit: int) -> List[int]:
    primes = set(range(2, limit + 1))
    for i in range(2, limit + 1):
        if i in primes:
            primes.difference_update(set(list(range(i, limit + 1, i))[1:]))
    return sorted(primes)

>>> list_primes(100)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97]

从2021年的答案开始,我还没有发现二进制数组方法对10亿以下的质数有利。

但我可以用几个技巧将质数从2加速到接近x2:

使用numexpr库将numpy表达式转换为分配较少的紧循环 取代np。有更快的选择 以某种方式操作筛选的前9个元素,因此不需要改变数组的形状

总之,在我的机器上,质数< 10亿的时间从25秒变成了14.5秒

import numexpr as ne
import numpy as np

def primesfrom2to_numexpr(n):
    # https://stackoverflow.com/questions/2068372/fastest-way-to-list-all-primes-below-n-in-python/3035188#3035188
    """ Input n>=24, Returns a array of primes, 2 <= p < n + a few over"""
    sieve = np.zeros((n // 3 + (n % 6 == 2))//4+1, dtype=np.int32)
    ne.evaluate('sieve + 0x01010101', out=sieve)
    sieve = sieve.view('int8')
    #sieve = np.ones(n // 3 + (n % 6 == 2), dtype=np.bool_)
    sieve[0] = 0
    for i in np.arange(int(n ** 0.5) // 3 + 1):
        if sieve[i]:
            k = 3 * i + 1 | 1
            sieve[((k * k) // 3)::2 * k] = 0
            sieve[(k * k + 4 * k - 2 * k * (i & 1)) // 3::2 * k] = 0
    sieve[[0,8]] = 1
    result = np.flatnonzero(sieve)
    ne.evaluate('result * 3 + 1 + result%2', out=result)
    result[:9] = [2,3,5,7,11,13,17,19,23]
    return result

到目前为止,我尝试过的最快的方法是基于Python烹饪书erat2函数:

import itertools as it
def erat2a( ):
    D = {  }
    yield 2
    for q in it.islice(it.count(3), 0, None, 2):
        p = D.pop(q, None)
        if p is None:
            D[q*q] = q
            yield q
        else:
            x = q + 2*p
            while x in D:
                x += 2*p
            D[x] = p

关于加速的解释,请看下面的答案。