这是我能想到的最好的算法。

def get_primes(n):
    numbers = set(range(n, 1, -1))
    primes = []
    while numbers:
        p = numbers.pop()
        primes.append(p)
        numbers.difference_update(set(range(p*2, n+1, p)))
    return primes

>>> timeit.Timer(stmt='get_primes.get_primes(1000000)', setup='import   get_primes').timeit(1)
1.1499958793645562

还能做得更快吗?

这段代码有一个缺陷:由于numbers是一个无序集,不能保证numbers.pop()将从集合中移除最低的数字。尽管如此,它还是适用于(至少对我来说)一些输入数字:

>>> sum(get_primes(2000000))
142913828922L
#That's the correct sum of all numbers below 2 million
>>> 529 in get_primes(1000)
False
>>> 529 in get_primes(530)
True

当前回答

你有一个更快的代码和最简单的代码生成质数。 但对于更大的数字,当n=10000, 10000000时,它不起作用,可能是。pop()方法失败了

考虑:N是质数吗?

case 1: You got some factors of N, for i in range(2, N): If N is prime loop is performed for ~(N-2) times. else less number of times case 2: for i in range(2, int(math.sqrt(N)): Loop is performed for almost ~(sqrt(N)-2) times if N is prime else will break somewhere case 3: Better We Divide N With Only number of primes<=sqrt(N) Where loop is performed for only π(sqrt(N)) times π(sqrt(N)) << sqrt(N) as N increases from math import sqrt from time import * prime_list = [2] n = int(input()) s = time() for n0 in range(2,n+1): for i0 in prime_list: if n0%i0==0: break elif i0>=int(sqrt(n0)): prime_list.append(n0) break e = time() print(e-s) #print(prime_list); print(f'pi({n})={len(prime_list)}') print(f'{n}: {len(prime_list)}, time: {e-s}') Output 100: 25, time: 0.00010275840759277344 1000: 168, time: 0.0008606910705566406 10000: 1229, time: 0.015588521957397461 100000: 9592, time: 0.023436546325683594 1000000: 78498, time: 4.1965954303741455 10000000: 664579, time: 109.24591708183289 100000000: 5761455, time: 2289.130858898163

小于1000似乎很慢,但小于10^6我认为更快。

然而,我无法理解时间的复杂性。

其他回答

如果你不想重新发明轮子,你可以安装符号数学库symphony(是的,它与Python 3兼容)

pip install sympy

然后使用质数函数

from sympy import sieve
primes = list(sieve.primerange(1, 10**6))

如果你接受itertools,但不接受numpy,这里有一个针对Python 3的rwh_primes2的改编版本,它在我的机器上运行速度大约是原来的两倍。唯一的实质性变化是使用bytearray而不是列表来表示布尔值,并使用压缩而不是列表推导来构建最终列表。(如果可以的话,我会把这句话作为moarningsun之类的评论。)

import itertools
izip = itertools.zip_longest
chain = itertools.chain.from_iterable
compress = itertools.compress
def rwh_primes2_python3(n):
    """ Input n>=6, Returns a list of primes, 2 <= p < n """
    zero = bytearray([False])
    size = n//3 + (n % 6 == 2)
    sieve = bytearray([True]) * size
    sieve[0] = False
    for i in range(int(n**0.5)//3+1):
      if sieve[i]:
        k=3*i+1|1
        start = (k*k+4*k-2*k*(i&1))//3
        sieve[(k*k)//3::2*k]=zero*((size - (k*k)//3 - 1) // (2 * k) + 1)
        sieve[  start ::2*k]=zero*((size -   start  - 1) // (2 * k) + 1)
    ans = [2,3]
    poss = chain(izip(*[range(i, n, 6) for i in (1,5)]))
    ans.extend(compress(poss, sieve))
    return ans

比较:

>>> timeit.timeit('primes.rwh_primes2(10**6)', setup='import primes', number=1)
0.0652179726976101
>>> timeit.timeit('primes.rwh_primes2_python3(10**6)', setup='import primes', number=1)
0.03267321276325674

and

>>> timeit.timeit('primes.rwh_primes2(10**8)', setup='import primes', number=1)
6.394284538007014
>>> timeit.timeit('primes.rwh_primes2_python3(10**8)', setup='import primes', number=1)
3.833829450302801

我在这里找到了一个纯Python 2素数生成器,在Willy Good的评论中,它比rwh2_primes快。

def primes235(limit):
yield 2; yield 3; yield 5
if limit < 7: return
modPrms = [7,11,13,17,19,23,29,31]
gaps = [4,2,4,2,4,6,2,6,4,2,4,2,4,6,2,6] # 2 loops for overflow
ndxs = [0,0,0,0,1,1,2,2,2,2,3,3,4,4,4,4,5,5,5,5,5,5,6,6,7,7,7,7,7,7]
lmtbf = (limit + 23) // 30 * 8 - 1 # integral number of wheels rounded up
lmtsqrt = (int(limit ** 0.5) - 7)
lmtsqrt = lmtsqrt // 30 * 8 + ndxs[lmtsqrt % 30] # round down on the wheel
buf = [True] * (lmtbf + 1)
for i in xrange(lmtsqrt + 1):
    if buf[i]:
        ci = i & 7; p = 30 * (i >> 3) + modPrms[ci]
        s = p * p - 7; p8 = p << 3
        for j in range(8):
            c = s // 30 * 8 + ndxs[s % 30]
            buf[c::p8] = [False] * ((lmtbf - c) // p8 + 1)
            s += p * gaps[ci]; ci += 1
for i in xrange(lmtbf - 6 + (ndxs[(limit - 7) % 30])): # adjust for extras
    if buf[i]: yield (30 * (i >> 3) + modPrms[i & 7])

我的结果:

$ time ./prime_rwh2.py 1e8
5761455 primes found < 1e8

real    0m3.201s
user    0m2.609s
sys     0m0.578s
$ time ./prime_wheel.py 1e8
5761455 primes found < 1e8

real    0m2.710s
user    0m2.469s
sys     0m0.219s

...在我最近的中档笔记本电脑(i5 8265U 1.6GHz)上运行Ubuntu Win 10。

这是一个mod 30轮筛,跳过倍数2,3和5。对我来说,它在2.5e9左右的时候工作得很好,那时我的笔记本电脑开始用完8G内存,需要大量交换。

我喜欢对30取余,因为它只有8个余数不是2 3 5的倍数。这允许使用移位和“&”进行乘法,除法和mod,并应该允许将一个mod 30轮的结果打包到一个字节中。我把威利的代码变成了一个分段的mod 30轮筛,以消除大N的抖动,并张贴在这里。

还有一个更快的Javascript版本,它是分段的,并使用了一个mod 210轮(没有2,3,5或7的倍数)@GordonBGood与一个深入的解释,这对我很有用。

这是使用存储列表查找质数的一种优雅而简单的解决方案。从4个变量开始,你只需要测试除数的奇数质数,你只需要测试你要测试的质数的一半(测试9,11,13是否能整除17没有意义)。它将先前存储的质数作为除数进行测试。

    # Program to calculate Primes
 primes = [1,3,5,7]
for n in range(9,100000,2):
    for x in range(1,(len(primes)/2)):
        if n % primes[x] == 0:
            break
    else:
        primes.append(n)
print primes

编写自己的质数查找代码很有指导意义,但手边有一个快速可靠的库也很有用。我围绕c++库primesieve编写了一个包装器,命名为primesieve-python

试试pip install primesieve吧

import primesieve
primes = primesieve.generate_primes(10**8)

我很好奇对比一下速度。