在Python中,给定一个项目,如何在列表中计算它的出现次数?


一个相关但不同的问题是计算集合中每个不同元素的出现次数,将字典或列表作为直方图结果而不是单个整数。有关该问题,请参阅使用字典统计列表中的项目。


当前回答

可能不是最有效的,需要额外的传递才能删除重复项。

功能实现:

arr = np.array(['a','a','b','b','b','c'])
print(set(map(lambda x  : (x , list(arr).count(x)) , arr)))

返回:

{('c', 1), ('b', 3), ('a', 2)}

或返回为dict:

print(dict(map(lambda x  : (x , list(arr).count(x)) , arr)))

返回:

{'b': 3, 'c': 1, 'a': 2}

其他回答

或者,您也可以自己实现计数器。我是这样做的:

item_list = ['me', 'me', 'you', 'you', 'you', 'they']

occ_dict = {}

for item in item_list:
    if item not in occ_dict:
        occ_dict[item] = 1
    else:
        occ_dict[item] +=1

print(occ_dict)

输出:{“我”:2,“你”:3,“他们”:1}

mot = ["compte", "france", "zied"]
lst = ["compte", "france", "france", "france", "france"]
dict((x, lst.count(x)) for x in set(mot))

这给了

{'compte': 1, 'france': 4, 'zied': 0}

如果您想一次计算所有值,可以使用numpy数组和bincount非常快速地完成,如下所示

import numpy as np
a = np.array([1, 2, 3, 4, 1, 4, 1])
np.bincount(a)

这给出了

>>> array([0, 3, 1, 1, 2])
import pandas as pd
test = [409.1, 479.0, 340.0, 282.4, 406.0, 300.0, 374.0, 253.3, 195.1, 269.0, 329.3, 250.7, 250.7, 345.3, 379.3, 275.0, 215.2, 300.0]

#turning the list into a temporary dataframe
test  = pd.DataFrame(test)

#using the very convenient value_counts() function
df_counts = test.value_counts()
df_counts

然后可以使用dfcounts.index和dfcounts.value来获取数据。

如果只需要单个项目的计数,请使用计数方法:

>>> [1, 2, 3, 4, 1, 4, 1].count(1)
3

重要提示:如果您正在计算多个不同的项目,这会非常缓慢

每个计数调用都会遍历n个元素的整个列表。在循环中调用计数n次意味着总共检查n次,这可能会对性能造成灾难性影响。

如果要计数多个项目,请使用计数器,它只进行n次总检查。