如何在函数中创建或使用全局变量?

如何在其他函数中使用一个函数中定义的全局变量?


未能在适当的地方使用全局关键字通常会导致UnboundLocalError。在第一次使用后重新分配局部变量时,UnboundLocalError中解释了这方面的精确规则。一般来说,当寻求解释时,请将其他问题作为该问题的副本,当某人只需要知道全局关键字时,请关闭该问题。


当前回答

您可能需要探索名称空间的概念。在Python中,模块是全局数据的自然位置:

每个模块都有自己的专用符号表,该表被模块中定义的所有函数用作全局符号表。因此,模块的作者可以在模块中使用全局变量,而不用担心与用户的全局变量发生意外冲突。另一方面,如果你知道你在做什么,你可以用与引用它的函数相同的符号modname.itemname来触摸模块的全局变量。

这里描述了模块中全局变量的具体用法-如何在模块之间共享全局变量?,为完整起见,内容如下:

在单个程序中跨模块共享信息的规范方法是创建一个特殊的配置模块(通常称为config或cfg)。只需在应用程序的所有模块中导入配置模块;然后,模块变为可用的全局名称。因为每个模块只有一个实例,所以对模块对象所做的任何更改都会在任何地方反映出来。例如:

文件:config.py

x=0#“x”配置设置的默认值

文件:mod.py

import config
config.x = 1

文件:main.py

import config
import mod
print config.x

其他回答

尽管这已经得到了回答,但我还是再次给出了解决方案,因为我更喜欢单线这是如果您希望在函数中创建全局变量

def someFunc():
    x=20
    globals()['y']=50
someFunc() # invoking function so that variable Y is created globally 
print(y) # output 50
print(x) #NameError: name 'x' is not defined as x was defined locally within function

全局变量很好-除了多处理

与不同平台/环境上的多处理相关的全局变量因为一边是Windows/Mac OS,另一边是Linux,这很麻烦。

我将用一个简单的例子向你展示这一点,指出我前段时间遇到的一个问题。

如果你想了解为什么Windows/MacOs和Linux上的情况不同需要知道的是,启动新进程的默认机制。。。

Windows/MacOs是“种子”Linux是“fork”

它们在内存分配和初始化方面有所不同。。。(但我不想谈这个此处)。

让我们看看这个问题/例子。。。

import multiprocessing

counter = 0

def do(task_id):
    global counter
    counter +=1
    print(f'task {task_id}: counter = {counter}')

if __name__ == '__main__':

    pool = multiprocessing.Pool(processes=4)
    task_ids = list(range(4))
    pool.map(do, task_ids)

窗户

如果你在Windows上运行这个(我想也是在MacOS上),你会得到以下输出。。。

task 0: counter = 1
task 1: counter = 2
task 2: counter = 3
task 3: counter = 4

Linux系统

如果您在Linux上运行此程序,则会得到以下结果。

task 0: counter = 1
task 1: counter = 1
task 2: counter = 1
task 3: counter = 1

事实证明,答案总是很简单。

下面是一个小示例模块,它以一种简单的方式在主定义中显示:

def five(enterAnumber,sumation):
    global helper
    helper  = enterAnumber + sumation

def isTheNumber():
    return helper

以下是如何在主要定义中显示它:

import TestPy

def main():
    atest  = TestPy
    atest.five(5,8)
    print(atest.isTheNumber())

if __name__ == '__main__':
    main()

这个简单的代码就是这样工作的,它会执行。我希望这有帮助。

对于并行执行,如果您不了解正在发生的情况,全局变量可能会导致意外的结果。下面是在多处理中使用全局变量的示例。我们可以清楚地看到,每个过程都使用自己的变量副本:

import multiprocessing
import os
import random
import sys
import time

def worker(new_value):
    old_value = get_value()
    set_value(random.randint(1, 99))
    print('pid=[{pid}] '
          'old_value=[{old_value:2}] '
          'new_value=[{new_value:2}] '
          'get_value=[{get_value:2}]'.format(
          pid=str(os.getpid()),
          old_value=old_value,
          new_value=new_value,
          get_value=get_value()))

def get_value():
    global global_variable
    return global_variable

def set_value(new_value):
    global global_variable
    global_variable = new_value

global_variable = -1

print('before set_value(), get_value() = [%s]' % get_value())
set_value(new_value=-2)
print('after  set_value(), get_value() = [%s]' % get_value())

processPool = multiprocessing.Pool(processes=5)
processPool.map(func=worker, iterable=range(15))

输出:

before set_value(), get_value() = [-1]
after  set_value(), get_value() = [-2]
pid=[53970] old_value=[-2] new_value=[ 0] get_value=[23]
pid=[53971] old_value=[-2] new_value=[ 1] get_value=[42]
pid=[53970] old_value=[23] new_value=[ 4] get_value=[50]
pid=[53970] old_value=[50] new_value=[ 6] get_value=[14]
pid=[53971] old_value=[42] new_value=[ 5] get_value=[31]
pid=[53972] old_value=[-2] new_value=[ 2] get_value=[44]
pid=[53973] old_value=[-2] new_value=[ 3] get_value=[94]
pid=[53970] old_value=[14] new_value=[ 7] get_value=[21]
pid=[53971] old_value=[31] new_value=[ 8] get_value=[34]
pid=[53972] old_value=[44] new_value=[ 9] get_value=[59]
pid=[53973] old_value=[94] new_value=[10] get_value=[87]
pid=[53970] old_value=[21] new_value=[11] get_value=[21]
pid=[53971] old_value=[34] new_value=[12] get_value=[82]
pid=[53972] old_value=[59] new_value=[13] get_value=[ 4]
pid=[53973] old_value=[87] new_value=[14] get_value=[70]

有两种方法可以将变量声明为全局变量:

1.在函数内部分配变量并使用全局线

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 

2.分配变量外部函数:

global_variable_2 = 2

现在我们可以在其他函数中使用这些声明的全局变量:

def declare_a_global_variable():
    global global_variable_1
    global_variable_1 = 1

# Note to use the function to global variables
declare_a_global_variable() 
global_variable_2 = 2

def print_variables():
    print(global_variable_1)
    print(global_variable_2)
print_variables() # prints 1 & 2

注1:

如果要更改另一个函数(如update_variables())中的全局变量,则应在分配变量之前在该函数中使用全局行:

global_variable_1 = 1
global_variable_2 = 2

def update_variables():
    global global_variable_1
    global_variable_1 = 11
    global_variable_2 = 12 # will update just locally for this function

update_variables()
print(global_variable_1) # prints 11
print(global_variable_2) # prints 2

注2:

在函数内部不使用全局行时,列表和字典变量的注释1有一个例外:

# declaring some global variables
variable = 'peter'
list_variable_1 = ['a','b']
list_variable_2 = ['c','d']

def update_global_variables():
    """without using global line"""
    variable = 'PETER' # won't update in global scope
    list_variable_1 = ['A','B'] # won't update in global scope
    list_variable_2[0] = 'C' # updated in global scope surprisingly this way
    list_variable_2[1] = 'D' # updated in global scope surprisingly this way

update_global_variables()

print('variable is: %s'%variable) # prints peter
print('list_variable_1 is: %s'%list_variable_1) # prints ['a', 'b']
print('list_variable_2 is: %s'%list_variable_2) # prints ['C', 'D']