我的背景——在Hadoop世界工作了4周。使用Cloudera的Hadoop VM对Hive, Pig和Hadoop进行了一些尝试。已阅读谷歌关于Map-Reduce和GFS的论文(PDF链接)。

我明白——

猪的语言猪的拉丁语是一种转变 来自(适合程序员的思维方式) SQL喜欢声明式的 编程和Hive的查询语言密切相关 类似于SQL。 Pig位于Hadoop之上 原则也可以凌驾于之上 德律阿得斯。我可能错了,但蜂巢错了 与Hadoop紧密耦合。 都是Pig Latin和Hive命令 编译映射和减少作业。

我的问题是——当一个(比如猪)可以达到目的时,拥有两者的目标是什么?难道只是因为雅虎宣传了Pig !和Facebook的Hive ?


当前回答

当我们在使用Hadoop时,从某种意义上说,这意味着我们正在尝试大量的数据处理,数据处理的最终目标将是从中生成内容/报告。

所以它内部由两个主要活动组成:

1)加载数据处理

2)生成内容并用于报告等。

加载/数据处理->猪将是有帮助的。

这有助于ETL(我们可以使用pig脚本执行ETL操作)。

一旦处理了结果,我们可以使用hive根据处理的结果生成报告。

Hive:它构建在hdfs之上,用于仓库处理。

我们可以很容易地使用hive从pig生成的经过处理的内容生成adhoc报告。

其他回答

我相信你的问题的真正答案是,它们是/是独立的项目,没有集中协调的目标。他们在早期处于不同的空间,随着两个项目的扩展,随着时间的推移逐渐重叠。

摘自Hadoop O'Reilly的书:

Pig:一种数据流语言 探索环境非常大 数据集。 Hive:分布式数据仓库

〇蜂巢Vs猪

Hive是一个SQL接口,允许SQL精明的用户或其他工具,如Tableu/Microstrategy/任何其他工具或语言,有SQL接口。

PIG更像是一个ETL管道,有一步一步的命令,比如声明变量、循环、迭代、条件语句等。

当我想编写复杂的分步逻辑时,我更喜欢编写Pig脚本而不是hive QL。当我很舒服地写一个sql拉数据我想我使用Hive。对于hive,你需要在查询之前定义表(就像你在RDBMS中做的那样)

两者的目的不同,但在引子下,两者都做相同的,转换为映射减少程序。此外,Apache开源社区正在为这两个项目添加越来越多的特性

有什么是HIVE可以做到的,而PIG做不到的?

分区可以使用HIVE完成,但不能在PIG中完成,这是一种绕过输出的方式。

什么是PIG可以做的,而在HIVE中是不可能的?

位置引用-即使你没有字段名,我们也可以使用像$0这样的位置来引用第一个字段,$1用于第二个字段,等等。

另一个基本区别是,PIG不需要一个模式来写值,但HIVE需要一个模式。

您可以使用JDBC和其他方法从任何外部应用程序连接到HIVE,但不能使用PIG。

注意:两者都运行在HDFS (hadoop分布式文件系统)上,语句被转换为Map Reduce程序。

Pig允许在管道中的任何位置加载数据和用户代码。如果数据是流数据,例如来自卫星或仪器的数据,这一点可能特别重要。

Hive是基于RDBMS的,它需要首先导入(或加载)数据,然后才能对其进行处理。因此,如果您在流数据上使用Hive,您将不得不不断填充桶(或文件),并在每个填充桶上使用Hive,同时使用其他桶来继续存储新到达的数据。

Pig也使用惰性求值。它使编程变得更加容易,人们可以用它来以不同的方式分析数据,比在像Hive这样的SQL类语言中更自由。因此,如果你真的想分析一些你拥有的非结构化数据中的矩阵或模式,并想对它们进行有趣的计算,使用Pig你可以走得很远,而使用Hive,你需要其他东西来处理结果。

Pig在数据导入方面更快,但在实际执行方面比像Hive这样的RDBMS友好语言要慢。

Pig非常适合并行化,因此它可能在数据集庞大的系统中具有优势,即在您更关心结果吞吐量而不是延迟(获得任何特定结果数据的时间)的系统中。

简单来说,Pig是一个高级平台,用于创建与Hadoop一起使用的MapReduce程序,使用Pig脚本我们将把大量数据处理成所需的格式。

一旦得到处理后的数据,这些处理后的数据就会保存在HDFS中,以便后续处理以获得所需的结果。

在存储的处理数据之上,我们将应用HIVE SQL命令来获得所需的结果,在内部这个HIVE SQL命令运行MAP Reduce程序。