用C语言求一个整数的幂的最有效方法是什么?

// 2^3
pow(2,3) == 8

// 5^5
pow(5,5) == 3125

当前回答

我用递归,如果exp是偶数,5^10 =25^5。

int pow(float base,float exp){
   if (exp==0)return 1;
   else if(exp>0&&exp%2==0){
      return pow(base*base,exp/2);
   }else if (exp>0&&exp%2!=0){
      return base*pow(base,exp-1);
   }
}

其他回答

请注意,平方求幂并不是最优的方法。这可能是一种适用于所有指数值的通用方法,但对于特定的指数值,可能有更好的序列,需要更少的乘法。

例如,如果你想计算x^15,用平方求幂的方法会给你:

x^15 = (x^7)*(x^7)*x 
x^7 = (x^3)*(x^3)*x 
x^3 = x*x*x

这一共有6次乘法。

事实证明,这可以通过“仅仅”5次加法链幂运算来完成。

n*n = n^2
n^2*n = n^3
n^3*n^3 = n^6
n^6*n^6 = n^12
n^12*n^3 = n^15

没有有效的算法来找到这个最优的乘法序列。从维基百科:

The problem of finding the shortest addition chain cannot be solved by dynamic programming, because it does not satisfy the assumption of optimal substructure. That is, it is not sufficient to decompose the power into smaller powers, each of which is computed minimally, since the addition chains for the smaller powers may be related (to share computations). For example, in the shortest addition chain for a¹⁵ above, the subproblem for a⁶ must be computed as (a³)² since a³ is re-used (as opposed to, say, a⁶ = a²(a²)², which also requires three multiplies).

我已经实现了记忆所有计算权力的算法,然后在需要时使用它们。比如x^13等于(x^2)^2^2 * x^2 * x其中x^2^2是从表中取出来的而不是再计算一次。这基本上是@Pramod answer的实现(但在c#中)。 需要的乘法数是Ceil(Log n)

public static int Power(int base, int exp)
{
    int tab[] = new int[exp + 1];
    tab[0] = 1;
    tab[1] = base;
    return Power(base, exp, tab);
}

public static int Power(int base, int exp, int tab[])
    {
         if(exp == 0) return 1;
         if(exp == 1) return base;
         int i = 1;
         while(i < exp/2)
         {  
            if(tab[2 * i] <= 0)
                tab[2 * i] = tab[i] * tab[i];
            i = i << 1;
          }
    if(exp <=  i)
        return tab[i];
     else return tab[i] * Power(base, exp - i, tab);
}

这是对平方求幂效率的后续讨论。

这种方法的优点是它在log(n)时间内运行。例如,如果你要计算一个巨大的数,比如x^1048575(2^20 - 1),你只需要循环20次,而不是使用朴素方法的100万+次。

此外,在代码复杂性方面,它比试图找到最优的乘法序列更简单,这是la Pramod的建议。

编辑:

我想我应该在有人指责我可能会溢出之前澄清一下。这种方法假设您有某种巨大的int库。

如果您在编译时知道指数(并且它是一个整数),您可以使用模板展开循环。这可以更有效,但我想在这里演示基本原则:

#include <iostream>

template<unsigned long N>
unsigned long inline exp_unroll(unsigned base) {
    return base * exp_unroll<N-1>(base);
}

我们使用模板特化来终止递归:

template<>
unsigned long inline exp_unroll<1>(unsigned base) {
    return base;
}

指数需要在运行时已知,

int main(int argc, char * argv[]) {
    std::cout << argv[1] <<"**5= " << exp_unroll<5>(atoi(argv[1])) << ;std::endl;
}

下面是Java中的方法

private int ipow(int base, int exp)
{
    int result = 1;
    while (exp != 0)
    {
        if ((exp & 1) == 1)
            result *= base;
        exp >>= 1;
        base *= base;
    }

    return result;
}