我试图监控一个使用CUDA和MPI的进程,有没有办法我可以做到这一点,像命令“顶部”,但也监控GPU ?
当前回答
使用参数"——query-compute-apps="
nvidia-smi --query-compute-apps=pid,process_name,used_memory --format=csv
如需进一步帮助,请关注
nvidia-smi --help-query-compute-app
其他回答
只需使用watch nvidia-smi,它将默认以2s间隔输出消息。
例如,如下图:
你也可以使用watch -n 5 nvidia-smi (-n 5 by 5s interval)。
这可能不够优雅,但你可以尝试一下
while true; do sleep 2; nvidia-smi; done
我也尝试了@Edric的方法,它很有效,但我更喜欢nvidia-smi的原始布局。
从这里下载并安装最新的稳定CUDA驱动程序(4.2)。在linux上,nVidia-smi 295.41给你你想要的。使用nvidia-smi:
[root@localhost release]# nvidia-smi
Wed Sep 26 23:16:16 2012
+------------------------------------------------------+
| NVIDIA-SMI 3.295.41 Driver Version: 295.41 |
|-------------------------------+----------------------+----------------------+
| Nb. Name | Bus Id Disp. | Volatile ECC SB / DB |
| Fan Temp Power Usage /Cap | Memory Usage | GPU Util. Compute M. |
|===============================+======================+======================|
| 0. Tesla C2050 | 0000:05:00.0 On | 0 0 |
| 30% 62 C P0 N/A / N/A | 3% 70MB / 2687MB | 44% Default |
|-------------------------------+----------------------+----------------------|
| Compute processes: GPU Memory |
| GPU PID Process name Usage |
|=============================================================================|
| 0. 7336 ./align 61MB |
+-----------------------------------------------------------------------------+
编辑:在最新的NVIDIA驱动程序中,此支持仅限于特斯拉卡。
最近,我写了一个名为nvitop的监控工具,交互式NVIDIA-GPU进程查看器。
它是用纯Python编写的,易于安装。
从PyPI安装:
pip3 install --upgrade nvitop
从GitHub安装最新版本(推荐):
pip3 install git+https://github.com/XuehaiPan/nvitop.git#egg=nvitop
作为资源监视器运行:
nvitop -m
nvitop将像nvidia-smi一样显示GPU状态,但有额外的花式条和历史图。
对于进程,它将使用psutil收集进程信息,并显示USER, %CPU, %MEM, TIME和COMMAND字段,这比nvidia-smi详细得多。此外,它在监控模式下响应用户输入。您可以中断或终止gpu上的进程。
Nvitop提供了一个树视图屏幕和一个环境屏幕:
此外,nvitop还可以集成到其他应用程序中。例如,集成到PyTorch训练代码:
import os
from nvitop.core import host, CudaDevice, HostProcess, GpuProcess
from torch.utils.tensorboard import SummaryWriter
device = CudaDevice(0)
this_process = GpuProcess(os.getpid(), device)
writer = SummaryWriter()
for epoch in range(n_epochs):
# some training code here
# ...
this_process.update_gpu_status()
writer.add_scalars(
'monitoring',
{
'device/memory_used': float(device.memory_used()) / (1 << 20), # convert bytes to MiBs
'device/memory_percent': device.memory_percent(),
'device/memory_utilization': device.memory_utilization(),
'device/gpu_utilization': device.gpu_utilization(),
'host/cpu_percent': host.cpu_percent(),
'host/memory_percent': host.virtual_memory().percent,
'process/cpu_percent': this_process.cpu_percent(),
'process/memory_percent': this_process.memory_percent(),
'process/used_gpu_memory': float(this_process.gpu_memory()) / (1 << 20), # convert bytes to MiBs
'process/gpu_sm_utilization': this_process.gpu_sm_utilization(),
'process/gpu_memory_utilization': this_process.gpu_memory_utilization(),
},
global_step
)
详情见https://github.com/XuehaiPan/nvitop。
注意:nvitop已获得GPLv3 License和Apache-2.0 License的双重授权。请随意将其作为您自己项目的依赖项使用。详见版权声明。
在设备监控模式下运行nvidia-smi,例如:
$ nvidia-smi dmon -d 3 -s pcvumt
# gpu pwr gtemp mtemp mclk pclk pviol tviol sm mem enc dec fb bar1 rxpci txpci
# Idx W C C MHz MHz % bool % % % % MB MB MB/s MB/s
0 273 54 - 9501 2025 0 0 100 11 0 0 18943 75 5906 659
0 280 54 - 9501 2025 0 0 100 11 0 0 18943 75 7404 650
0 277 54 - 9501 2025 0 0 100 11 0 0 18943 75 7386 719
0 279 55 - 9501 2025 0 0 99 11 0 0 18945 75 6592 692
0 281 55 - 9501 2025 0 0 99 11 0 0 18945 75 7760 641
0 279 55 - 9501 2025 0 0 99 11 0 0 18945 75 7775 668
0 279 55 - 9501 2025 0 0 100 11 0 0 18947 75 7589 690
0 281 55 - 9501 2025 0 0 99 12 0 0 18947 75 7514 657
0 279 55 - 9501 2025 0 0 100 11 0 0 18947 75 6472 558
0 280 54 - 9501 2025 0 0 100 11 0 0 18947 75 7066 683
完整的细节在man nvidia-smi。