如果我们使用循环而不是递归,或者反之,在两者都可以达到相同目的的算法中,性能是否会受到影响?检查给定的字符串是否是回文。 我见过许多程序员使用递归作为一种炫耀的手段,当一个简单的迭代算法可以满足要求。 编译器在决定使用什么时起着至关重要的作用吗?


当前回答

在很多情况下,它提供了比迭代方法更优雅的解决方案,常见的例子是遍历二叉树,所以它不一定更难维护。一般来说,迭代版本通常更快一些(在优化过程中可能会取代递归版本),但递归版本更容易理解和正确实现。

其他回答

通常情况下,人们会期望性能损失在另一个方向上。递归调用会导致构建额外的堆栈帧;对此的惩罚各不相同。此外,在一些语言中,如Python(更准确地说,是在某些语言的某些实现中……),对于递归指定的任务,您可能很容易遇到堆栈限制,例如在树状数据结构中查找最大值。在这些情况下,你应该坚持使用循环。

编写好的递归函数可以在一定程度上降低性能损失,前提是你有一个优化尾部递归的编译器,等等(还要再次检查,确保函数真的是尾部递归——这是许多人都会犯的错误之一)。

除了“边缘”情况(高性能计算、非常大的递归深度等)之外,最好采用最清楚地表达您的意图、设计良好且可维护的方法。仅在确定需求后进行优化。

使用Chrome 45.0.2454.85 m,递归似乎要快得多。

代码如下:

(function recursionVsForLoop(global) {
    "use strict";

    // Perf test
    function perfTest() {}

    perfTest.prototype.do = function(ns, fn) {
        console.time(ns);
        fn();
        console.timeEnd(ns);
    };

    // Recursion method
    (function recur() {
        var count = 0;
        global.recurFn = function recurFn(fn, cycles) {
            fn();
            count = count + 1;
            if (count !== cycles) recurFn(fn, cycles);
        };
    })();

    // Looped method
    function loopFn(fn, cycles) {
        for (var i = 0; i < cycles; i++) {
            fn();
        }
    }

    // Tests
    var curTest = new perfTest(),
        testsToRun = 100;

    curTest.do('recursion', function() {
        recurFn(function() {
            console.log('a recur run.');
        }, testsToRun);
    });

    curTest.do('loop', function() {
        loopFn(function() {
            console.log('a loop run.');
        }, testsToRun);
    });

})(window);

结果

//使用标准for循环运行100次

循环运行100x。 完成时间:7.683ms

//使用带有尾递归的函数递归方法运行100次

100x递归运行。 完成时间:4.841毫秒

在下面的截图中,当每次测试运行300次循环时,递归再次以更大的优势获胜

在许多情况下,由于缓存提高了性能,递归更快。例如,这是一个使用传统归并例程的归并排序的迭代版本。它将比递归实现运行得慢,因为缓存改进了性能。

迭代实现

public static void sort(Comparable[] a)
{
    int N = a.length;
    aux = new Comparable[N];
    for (int sz = 1; sz < N; sz = sz+sz)
        for (int lo = 0; lo < N-sz; lo += sz+sz)
            merge(a, lo, lo+sz-1, Math.min(lo+sz+sz-1, N-1));
}

递归实现

private static void sort(Comparable[] a, Comparable[] aux, int lo, int hi)
{
    if (hi <= lo) return;
    int mid = lo + (hi - lo) / 2;
    sort(a, aux, lo, mid);
    sort(a, aux, mid+1, hi);
    merge(a, aux, lo, mid, hi);
}

PS -这是Kevin Wayne教授(普林斯顿大学)在Coursera上的算法课程上讲的。

循环可以提高程序的性能。递归可以为程序员带来性能上的提升。在你的情况下,选择哪个更重要!

我发现了这些方法之间的另一个不同之处。 它看起来简单而不重要,但当你准备面试时,它有一个非常重要的角色,所以仔细看。

简而言之: 1)迭代后序遍历并不容易——这使得DFT更加复杂 2)循环检查更容易递归

细节:

在递归的情况下,很容易创建前后遍历:

想象一个相当标准的问题:“当任务依赖于其他任务时,打印所有应该执行的任务以执行任务5”

例子:

    //key-task, value-list of tasks the key task depends on
    //"adjacency map":
    Map<Integer, List<Integer>> tasksMap = new HashMap<>();
    tasksMap.put(0, new ArrayList<>());
    tasksMap.put(1, new ArrayList<>());

    List<Integer> t2 = new ArrayList<>();
    t2.add(0);
    t2.add(1);
    tasksMap.put(2, t2);

    List<Integer> t3 = new ArrayList<>();
    t3.add(2);
    t3.add(10);
    tasksMap.put(3, t3);

    List<Integer> t4 = new ArrayList<>();
    t4.add(3);
    tasksMap.put(4, t4);

    List<Integer> t5 = new ArrayList<>();
    t5.add(3);
    tasksMap.put(5, t5);

    tasksMap.put(6, new ArrayList<>());
    tasksMap.put(7, new ArrayList<>());

    List<Integer> t8 = new ArrayList<>();
    t8.add(5);
    tasksMap.put(8, t8);

    List<Integer> t9 = new ArrayList<>();
    t9.add(4);
    tasksMap.put(9, t9);

    tasksMap.put(10, new ArrayList<>());

    //task to analyze:
    int task = 5;


    List<Integer> res11 = getTasksInOrderDftReqPostOrder(tasksMap, task);
    System.out.println(res11);**//note, no reverse required**

    List<Integer> res12 = getTasksInOrderDftReqPreOrder(tasksMap, task);
    Collections.reverse(res12);//note reverse!
    System.out.println(res12);

    private static List<Integer> getTasksInOrderDftReqPreOrder(Map<Integer, List<Integer>> tasksMap, int task) {
         List<Integer> result = new ArrayList<>();
         Set<Integer> visited = new HashSet<>();
         reqPreOrder(tasksMap,task,result, visited);
         return result;
    }

private static void reqPreOrder(Map<Integer, List<Integer>> tasksMap, int task, List<Integer> result, Set<Integer> visited) {

    if(!visited.contains(task)) {
        visited.add(task);
        result.add(task);//pre order!
        List<Integer> children = tasksMap.get(task);
        if (children != null && children.size() > 0) {
            for (Integer child : children) {
                reqPreOrder(tasksMap,child,result, visited);
            }
        }
    }
}

private static List<Integer> getTasksInOrderDftReqPostOrder(Map<Integer, List<Integer>> tasksMap, int task) {
    List<Integer> result = new ArrayList<>();
    Set<Integer> visited = new HashSet<>();
    reqPostOrder(tasksMap,task,result, visited);
    return result;
}

private static void reqPostOrder(Map<Integer, List<Integer>> tasksMap, int task, List<Integer> result, Set<Integer> visited) {
    if(!visited.contains(task)) {
        visited.add(task);
        List<Integer> children = tasksMap.get(task);
        if (children != null && children.size() > 0) {
            for (Integer child : children) {
                reqPostOrder(tasksMap,child,result, visited);
            }
        }
        result.add(task);//post order!
    }
}

注意,递归后序遍历不需要对结果进行后续反转。孩子先打印,你的任务最后打印。一切都很好。您可以执行递归的预顺序遍历(上面也显示了),这将需要反转结果列表。

迭代方法并不那么简单!在迭代(一个堆栈)方法中,你只能做一个预排序遍历,所以你必须在最后反转结果数组:

    List<Integer> res1 = getTasksInOrderDftStack(tasksMap, task);
    Collections.reverse(res1);//note reverse!
    System.out.println(res1);

    private static List<Integer> getTasksInOrderDftStack(Map<Integer, List<Integer>> tasksMap, int task) {
    List<Integer> result = new ArrayList<>();
    Set<Integer> visited = new HashSet<>();
    Stack<Integer> st = new Stack<>();


    st.add(task);
    visited.add(task);

    while(!st.isEmpty()){
        Integer node = st.pop();
        List<Integer> children = tasksMap.get(node);
        result.add(node);
        if(children!=null && children.size() > 0){
            for(Integer child:children){
                if(!visited.contains(child)){
                    st.add(child);
                    visited.add(child);
                }
            }
        }
        //If you put it here - it does not matter - it is anyway a pre-order
        //result.add(node);
    }
    return result;
}

看起来很简单,不是吗?

但在一些面试中,这是一个陷阱。

It means the following: with the recursive approach, you can implement Depth First Traversal and then select what order you need pre or post(simply by changing the location of the "print", in our case of the "adding to the result list"). With the iterative (one stack) approach you can easily do only pre-order traversal and so in the situation when children need be printed first(pretty much all situations when you need start print from the bottom nodes, going upwards) - you are in the trouble. If you have that trouble you can reverse later, but it will be an addition to your algorithm. And if an interviewer is looking at his watch it may be a problem for you. There are complex ways to do an iterative post-order traversal, they exist, but they are not simple. Example:https://www.geeksforgeeks.org/iterative-postorder-traversal-using-stack/

因此,底线是:我会在面试中使用递归,这样更容易管理和解释。在任何紧急情况下,您都可以轻松地从前顺序遍历到后顺序遍历。在迭代中,你就没有那么灵活了。

我会使用递归,然后说:“好吧,但是迭代可以让我更直接地控制使用的内存,我可以很容易地测量堆栈大小,并禁止一些危险的溢出。”

递归的另一个优点——避免/注意图中的循环更简单。

例子(preudocode):

dft(n){
    mark(n)
    for(child: n.children){
        if(marked(child)) 
            explode - cycle found!!!
        dft(child)
    }
    unmark(n)
}