维基百科上的余弦相似度文章
你能在这里(以列表或其他形式)显示向量吗? 然后算一算,看看是怎么回事?
维基百科上的余弦相似度文章
你能在这里(以列表或其他形式)显示向量吗? 然后算一算,看看是怎么回事?
当前回答
这是我在c#中的实现。
using System;
namespace CosineSimilarity
{
class Program
{
static void Main()
{
int[] vecA = {1, 2, 3, 4, 5};
int[] vecB = {6, 7, 7, 9, 10};
var cosSimilarity = CalculateCosineSimilarity(vecA, vecB);
Console.WriteLine(cosSimilarity);
Console.Read();
}
private static double CalculateCosineSimilarity(int[] vecA, int[] vecB)
{
var dotProduct = DotProduct(vecA, vecB);
var magnitudeOfA = Magnitude(vecA);
var magnitudeOfB = Magnitude(vecB);
return dotProduct/(magnitudeOfA*magnitudeOfB);
}
private static double DotProduct(int[] vecA, int[] vecB)
{
// I'm not validating inputs here for simplicity.
double dotProduct = 0;
for (var i = 0; i < vecA.Length; i++)
{
dotProduct += (vecA[i] * vecB[i]);
}
return dotProduct;
}
// Magnitude of the vector is the square root of the dot product of the vector with itself.
private static double Magnitude(int[] vector)
{
return Math.Sqrt(DotProduct(vector, vector));
}
}
}
其他回答
两个向量A和B存在于二维空间或三维空间中,它们之间的夹角为cos相似度。
如果角度更大(可以达到最大180度),即Cos 180=-1,最小角度为0度。cos0 =1意味着向量是对齐的,因此向量是相似的。
cos 90=0(这足以得出向量A和B根本不相似,因为距离不能为负,余弦值将在0到1之间。因此,更多的角度意味着降低相似性(视觉化也有意义)
简单的JAVA代码计算余弦相似度
/**
* Method to calculate cosine similarity of vectors
* 1 - exactly similar (angle between them is 0)
* 0 - orthogonal vectors (angle between them is 90)
* @param vector1 - vector in the form [a1, a2, a3, ..... an]
* @param vector2 - vector in the form [b1, b2, b3, ..... bn]
* @return - the cosine similarity of vectors (ranges from 0 to 1)
*/
private double cosineSimilarity(List<Double> vector1, List<Double> vector2) {
double dotProduct = 0.0;
double normA = 0.0;
double normB = 0.0;
for (int i = 0; i < vector1.size(); i++) {
dotProduct += vector1.get(i) * vector2.get(i);
normA += Math.pow(vector1.get(i), 2);
normB += Math.pow(vector2.get(i), 2);
}
return dotProduct / (Math.sqrt(normA) * Math.sqrt(normB));
}
这是一个简单的Python代码,实现余弦相似度。
from scipy import linalg, mat, dot
import numpy as np
In [12]: matrix = mat( [[2, 1, 0, 2, 0, 1, 1, 1],[2, 1, 1, 1, 1, 0, 1, 1]] )
In [13]: matrix
Out[13]:
matrix([[2, 1, 0, 2, 0, 1, 1, 1],
[2, 1, 1, 1, 1, 0, 1, 1]])
In [14]: dot(matrix[0],matrix[1].T)/np.linalg.norm(matrix[0])/np.linalg.norm(matrix[1])
Out[14]: matrix([[ 0.82158384]])
以@Bill Bell为例,在[R]中有两种方法
a = c(2,1,0,2,0,1,1,1)
b = c(2,1,1,1,1,0,1,1)
d = (a %*% b) / (sqrt(sum(a^2)) * sqrt(sum(b^2)))
或者利用crossprod()方法的性能…
e = crossprod(a, b) / (sqrt(crossprod(a, a)) * sqrt(crossprod(b, b)))
下面是一个简单的计算余弦相似度的Python代码:
import math
def dot_prod(v1, v2):
ret = 0
for i in range(len(v1)):
ret += v1[i] * v2[i]
return ret
def magnitude(v):
ret = 0
for i in v:
ret += i**2
return math.sqrt(ret)
def cos_sim(v1, v2):
return (dot_prod(v1, v2)) / (magnitude(v1) * magnitude(v2))