如何获取panda数据帧df的行数?


当前回答

这两种方法都可以做到(df是DataFrame的名称):

方法1:使用len函数:

len(df)将给出名为df的DataFrame中的行数。

方法2:使用计数函数:

df[col].count()将计算给定列col中的行数。

df.count()将给出所有列的行数。

其他回答

这两种方法都可以做到(df是DataFrame的名称):

方法1:使用len函数:

len(df)将给出名为df的DataFrame中的行数。

方法2:使用计数函数:

df[col].count()将计算给定列col中的行数。

df.count()将给出所有列的行数。

使用len(df)或len(df.index)时,可能会遇到以下错误:

----> 4 df['id'] = np.arange(len(df.index)
TypeError: 'int' object is not callable

解决方案:

lengh = df.shape[0]

对于dataframe df,在浏览数据时使用的打印逗号格式的行计数:

def nrow(df):
    print("{:,}".format(df.shape[0]))

例子:

nrow(my_df)
12,456,789

如果要在链接操作的中间获取行数,可以使用:

df.pipe(len)

例子:

row_count = (
      pd.DataFrame(np.random.rand(3,4))
      .reset_index()
      .pipe(len)
)

如果您不想在len()函数中放一个长语句,这可能很有用。

您可以改用__len__(),但__len__)看起来有点奇怪。

找出数据帧中行数的另一种方法是pandas.Index.size,我认为这是最可读的变体。

请注意,正如我对公认答案的评论,

疑似pandas.Index.size实际上比len(df.Index)更快,但在我的计算机上告诉的是相反的情况(每个循环大约慢150 ns)。