Python包含了用于min-堆的heapq模块,但我需要一个max堆。在Python中我应该使用什么来实现最大堆?


当前回答

扩展int类并重写__lt__是一种方法。

import queue
class MyInt(int):
    def __lt__(self, other):
        return self > other

def main():
    q = queue.PriorityQueue()
    q.put(MyInt(10))
    q.put(MyInt(5))
    q.put(MyInt(1))
    while not q.empty():
        print (q.get())


if __name__ == "__main__":
    main()

其他回答

这是一个基于heapq的简单MaxHeap实现。虽然它只适用于数值。

import heapq
from typing import List


class MaxHeap:
    def __init__(self):
        self.data = []

    def top(self):
        return -self.data[0]

    def push(self, val):
        heapq.heappush(self.data, -val)

    def pop(self):
        return -heapq.heappop(self.data)

用法:

max_heap = MaxHeap()
max_heap.push(3)
max_heap.push(5)
max_heap.push(1)
print(max_heap.top())  # 5

最简单的方法是反转键的值并使用heapq。例如,将1000.0转换为-1000.0,将5.0转换为-5.0。

arr = [3,4,5,1,2,3,0,7,8,90,67,31,2,5,567]
# max-heap sort will lead the array to assending order
def maxheap(arr,p):
    
    for i in range(len(arr)-p):
        if i > 0:
            child = i
            parent = (i+1)//2 - 1
            
            while arr[child]> arr[parent] and child !=0:
                arr[child], arr[parent] = arr[parent], arr[child]
                child = parent
                parent = (parent+1)//2 -1
                
    
def heapsort(arr):
    for i in range(len(arr)):
        maxheap(arr,i)
        arr[0], arr[len(arr)-i-1]=arr[len(arr)-i-1],arr[0]
        
    return arr
        

print(heapsort(arr))

试试这个

heapq模块拥有实现maxheap所需的一切。 它只做max-heap的堆推功能。 我已在下面示范如何克服这一点

在heapq模块中添加这个函数:

def _heappush_max(heap, item):
    """Push item onto heap, maintaining the heap invariant."""
    heap.append(item)
    _siftdown_max(heap, 0, len(heap)-1)

最后加上这句话:

try:
    from _heapq import _heappush_max
except ImportError:
    pass

瞧!这是完成了。

PS -转到heapq函数。首先在编辑器中写入“import heapq”,然后右键单击“heapq”并选择转到定义。

最简单最理想的解决方案

将这些值乘以-1

好了。所有最高的数字现在都是最低的,反之亦然。

只要记住,当您弹出一个元素与-1相乘以再次获得原始值时。