给定两个包含范围[x1:x2]和[y1:y2],其中x1≤x2和y1≤y2,测试这两个范围是否有重叠的最有效方法是什么?

一个简单的实现如下:

bool testOverlap(int x1, int x2, int y1, int y2) {
  return (x1 >= y1 && x1 <= y2) ||
         (x2 >= y1 && x2 <= y2) ||
         (y1 >= x1 && y1 <= x2) ||
         (y2 >= x1 && y2 <= x2);
}

但是我希望有更有效的方法来计算这个。

就最少的操作而言,哪种方法是最有效的?


当前回答

我相信min(upper(A),upper(B))>=max(lower(A),lower(B))将是一个很好的解决方案,不仅因为它的简单性,而且因为它超越了两个范围的可扩展性。

其他回答

这很容易扭曲正常人的大脑,所以我找到了一个更容易理解的视觉方法:

勒解释

如果两个范围“太胖”,无法放入正好是两者宽度之和的槽中,那么它们就会重叠。

对于范围[a1, a2]和[b1, b2],这将是:

/**
 * we are testing for:
 *     max point - min point < w1 + w2    
 **/
if max(a2, b2) - min(a1, b1) < (a2 - a1) + (b2 - b1) {
  // too fat -- they overlap!
}
return x2 >= y1 && x1 <= y2;

为什么这样做有效: 范围不重叠的唯一情况是当一个范围的结束在另一个范围的开始之前。所以我们想要!(x2 < y1 || x1 > y2)它等价于上面。

如果有人正在寻找计算实际重叠的一行程序:

int overlap = ( x2 > y1 || y2 < x1 ) ? 0 : (y2 >= y1 && x2 <= y1 ? y1 : y2) - ( x2 <= x1 && y2 >= x1 ? x1 : x2) + 1; //max 11 operations

如果你想要少一些操作,但多一些变量:

bool b1 = x2 <= y1;
bool b2 = y2 >= x1;
int overlap = ( !b1 || !b2 ) ? 0 : (y2 >= y1 && b1 ? y1 : y2) - ( x2 <= x1 && b2 ? x1 : x2) + 1; // max 9 operations

我相信min(upper(A),upper(B))>=max(lower(A),lower(B))将是一个很好的解决方案,不仅因为它的简单性,而且因为它超越了两个范围的可扩展性。

从开始的最大值减去范围末端的最小值似乎可以达到目的。如果结果小于等于零,就有重叠。这很直观: