我如何使用timeit来比较我自己的函数(如“insertion_sort”和“tim_sort”)的性能?
当前回答
您将创建两个函数,然后运行与此类似的程序。 注意,您希望选择相同的执行/运行数来比较apple和apple。 这是在Python 3.7下测试的。
下面是便于复制的代码
!/usr/local/bin/python3
import timeit
def fibonacci(n):
"""
Returns the n-th Fibonacci number.
"""
if(n == 0):
result = 0
elif(n == 1):
result = 1
else:
result = fibonacci(n-1) + fibonacci(n-2)
return result
if __name__ == '__main__':
import timeit
t1 = timeit.Timer("fibonacci(13)", "from __main__ import fibonacci")
print("fibonacci ran:",t1.timeit(number=1000), "milliseconds")
其他回答
# Генерация целых чисел
def gen_prime(x):
multiples = []
results = []
for i in range(2, x+1):
if i not in multiples:
results.append(i)
for j in range(i*i, x+1, i):
multiples.append(j)
return results
import timeit
# Засекаем время
start_time = timeit.default_timer()
gen_prime(3000)
print(timeit.default_timer() - start_time)
# start_time = timeit.default_timer()
# gen_prime(1001)
# print(timeit.default_timer() - start_time)
简单地传递你的整个代码作为timeit参数:
import timeit
print(timeit.timeit(
"""
limit = 10000
prime_list = [i for i in range(2, limit+1)]
for prime in prime_list:
for elem in range(prime*2, max(prime_list)+1, prime):
if elem in prime_list:
prime_list.remove(elem)
"""
, number=10))
让我们在以下每个语句中设置相同的字典并测试执行时间。
setup参数基本上是设置字典
编号是运行代码1000000次。不是设置,而是stmt
当你运行这个时,你会发现index比get快得多。您可以多次运行它来查看。
这段代码基本上是试图从字典中获取c的值。
import timeit
print('Getting value of C by index:', timeit.timeit(stmt="mydict['c']", setup="mydict={'a':5, 'b':6, 'c':7}", number=1000000))
print('Getting value of C by get:', timeit.timeit(stmt="mydict.get('c')", setup="mydict={'a':5, 'b':6, 'c':7}", number=1000000))
这是我的结果,你的结果会有所不同。
按索引:0.20900007452246427
get: 0.54841166886888
您将创建两个函数,然后运行与此类似的程序。 注意,您希望选择相同的执行/运行数来比较apple和apple。 这是在Python 3.7下测试的。
下面是便于复制的代码
!/usr/local/bin/python3
import timeit
def fibonacci(n):
"""
Returns the n-th Fibonacci number.
"""
if(n == 0):
result = 0
elif(n == 1):
result = 1
else:
result = fibonacci(n-1) + fibonacci(n-2)
return result
if __name__ == '__main__':
import timeit
t1 = timeit.Timer("fibonacci(13)", "from __main__ import fibonacci")
print("fibonacci ran:",t1.timeit(number=1000), "milliseconds")
timeit的工作方式是运行一次设置代码,然后重复调用一系列语句。因此,如果您想测试排序,需要一些注意,以便在原地排序时的一次传递不会影响使用已经排序的数据的下一次传递(当然,这将使Timsort真正发挥作用,因为当数据已经部分排序时,它的性能最好)。
下面是一个如何设置排序测试的例子:
>>> import timeit
>>> setup = '''
import random
random.seed('slartibartfast')
s = [random.random() for i in range(1000)]
timsort = list.sort
'''
>>> print min(timeit.Timer('a=s[:]; timsort(a)', setup=setup).repeat(7, 1000))
0.334147930145
请注意,这一系列语句在每次传递时都对未排序的数据进行新拷贝。
另外,请注意运行测量套件7次并只保留最佳时间的计时技术——这可以真正帮助减少由于系统上运行的其他进程而导致的测量失真。
以上就是我对如何正确利用时间的建议。
推荐文章
- 证书验证失败:无法获得本地颁发者证书
- 当使用pip3安装包时,“Python中的ssl模块不可用”
- 无法切换Python与pyenv
- Python if not == vs if !=
- 如何从scikit-learn决策树中提取决策规则?
- 为什么在Mac OS X v10.9 (Mavericks)的终端中apt-get功能不起作用?
- 将旋转的xtick标签与各自的xtick对齐
- 为什么元组可以包含可变项?
- 如何合并字典的字典?
- 如何创建类属性?
- 不区分大小写的“in”
- 在Python中获取迭代器中的元素个数
- 解析日期字符串并更改格式
- 使用try和。Python中的if
- 如何在Python中获得所有直接子目录