我刚开始学习Python,我不知道什么是内存化,也不知道如何使用它。另外,我可以举一个简单的例子吗?
当前回答
我发现这非常有用
from functools import wraps
def memoize(function):
memo = {}
@wraps(function)
def wrapper(*args):
# add the new key to dict if it doesn't exist already
if args not in memo:
memo[args] = function(*args)
return memo[args]
return wrapper
@memoize
def fibonacci(n):
if n < 2: return n
return fibonacci(n - 1) + fibonacci(n - 2)
fibonacci(25)
其他回答
记忆是将函数转换为数据结构的过程。通常,人们希望增量地、惰性地进行转换(根据给定的域元素——或“键”的要求)。在惰性函数语言中,这种惰性转换可以自动发生,因此可以在没有(显式)副作用的情况下实现内存化。
记忆基本上是保存用递归算法完成的过去操作的结果,以便在以后需要进行相同的计算时减少遍历递归树的需要。
参见http://scriptbucket.wordpress.com/2012/12/11/introduction-to-memoization/
Python中的斐波那契内存示例:
fibcache = {}
def fib(num):
if num in fibcache:
return fibcache[num]
else:
fibcache[num] = num if num < 2 else fib(num-1) + fib(num-2)
return fibcache[num]
其他答案很好地涵盖了它的本质。我不是在重复。只是一些可能对你有用的观点。
通常,memoisation是一种可以应用在任何函数上的操作,该函数计算一些东西(昂贵的)并返回一个值。因此,它通常被实现为一个装饰器。实现很简单,大概是这样的
memoised_function = memoise(actual_function)
或者表示为装饰者
@memoise
def actual_function(arg1, arg2):
#body
与传递关键字参数的顺序无关的位置参数和关键字参数的解决方案(使用inspect.getargspec):
import inspect
import functools
def memoize(fn):
cache = fn.cache = {}
@functools.wraps(fn)
def memoizer(*args, **kwargs):
kwargs.update(dict(zip(inspect.getargspec(fn).args, args)))
key = tuple(kwargs.get(k, None) for k in inspect.getargspec(fn).args)
if key not in cache:
cache[key] = fn(**kwargs)
return cache[key]
return memoizer
类似的问题:在Python中识别用于内存化的等效可变参数函数调用
如果要考虑速度:
@functools。cache和@functools.lru_cache(maxsize=None)同样快,在我的系统上循环一百万次需要0.122秒(最好运行15次) 全局缓存变量要慢得多,在我的系统上循环一百万次需要0.180秒(最好运行15次) 一个自我。缓存类变量仍然有点慢,在我的系统上循环一百万次需要0.214秒(最好运行15次)
后两者的实现方式与目前投票最多的答案中描述的类似。
这没有防止内存耗尽,也就是说,我没有在类或全局方法中添加代码来限制缓存的大小,这真的是最基本的实现。如果需要的话,lru_cache方法可以免费提供。
对我来说,一个悬而未决的问题是如何对具有functools装饰器的东西进行单元测试。是否有可能以某种方式清空缓存?单元测试似乎使用class方法(在这里您可以为每个测试实例化一个新类)或全局变量方法(因为您可以使用您的rimportedmodule)是最干净的。Cachevariable ={}来清空它)。