Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

收益率与返回率相似。区别是:

函数输出使函数可循环( 在以下示例中, 质数( n= 1) 函数成为可循环的 )。 它基本上意味着下次调用函数时, 它会从它离开的地方( 以产出表达式的线为后方) 继续 。

def isprime(n):
    if n == 1:
        return False
    for x in range(2, n):
        if n % x == 0:
            return False
    else:
        return True

def primes(n = 1):
   while(True):
       if isprime(n): yield n
       n += 1 

for n in primes():
    if n > 100: break
    print(n)

在上述例子中, 如果是inprime( n) 是真实的, 它会返回质号。 在下一个迭代中, 它会从下一行继续

n += 1  

其他回答

这样想吧:

迭代器只是具有下一个( ) 方法的对象的奇特探测术语。 因此, 产生式的函数最终会变成这样 :

原文:

def some_function():
    for i in xrange(4):
        yield i

for i in some_function():
    print i

Python 翻译用上述代码所做的基本上就是:

class it:
    def __init__(self):
        # Start at -1 so that we get 0 when we add 1 below.
        self.count = -1

    # The __iter__ method will be called once by the 'for' loop.
    # The rest of the magic happens on the object returned by this method.
    # In this case it is the object itself.
    def __iter__(self):
        return self

    # The next method will be called repeatedly by the 'for' loop
    # until it raises StopIteration.
    def next(self):
        self.count += 1
        if self.count < 4:
            return self.count
        else:
            # A StopIteration exception is raised
            # to signal that the iterator is done.
            # This is caught implicitly by the 'for' loop.
            raise StopIteration

def some_func():
    return it()

for i in some_func():
    print i

为了更深入地了解幕后发生的事情,

iterator = some_func()
try:
    while 1:
        print iterator.next()
except StopIteration:
    pass

这更有意义还是更让人困惑?

我要指出,为了说明起见,这过于简单化。 )

以下是一些Python的例子, 说明如何实际安装发电机, 仿佛Python没有提供同声糖:

作为Python发电机:

from itertools import islice

def fib_gen():
    a, b = 1, 1
    while True:
        yield a
        a, b = b, a + b

assert [1, 1, 2, 3, 5] == list(islice(fib_gen(), 5))

使用地法关闭代替发电机

def ftake(fnext, last):
    return [fnext() for _ in xrange(last)]

def fib_gen2():
    #funky scope due to python2.x workaround
    #for python 3.x use nonlocal
    def _():
        _.a, _.b = _.b, _.a + _.b
        return _.a
    _.a, _.b = 0, 1
    return _

assert [1,1,2,3,5] == ftake(fib_gen2(), 5)

使用关闭物体而不是发电机(因为关闭物体和物体是等效的)

class fib_gen3:
    def __init__(self):
        self.a, self.b = 1, 1

    def __call__(self):
        r = self.a
        self.a, self.b = self.b, self.a + self.b
        return r

assert [1,1,2,3,5] == ftake(fib_gen3(), 5)

以下是基于收益率的简单方法, 用来计算Fibonacci系列, 解释如下:

def fib(limit=50):
    a, b = 0, 1
    for i in range(limit):
       yield b
       a, b = b, a+b

当你把这个输入你的REPL,然后尝试把它称为, 你会得到一个神秘的结果:

>>> fib()
<generator object fib at 0x7fa38394e3b8>

这是因为向 Python 发出的产出信号 表明您想要创建一个生成器, 即一个根据需求产生价值的物体。

那么,你如何生成这些值?这要么直接通过下一个使用内置函数来实现,要么间接地通过将内置函数输入一个消耗值的构造来实现。

使用下个() 内置函数, 您可以直接引用. extext/ __ extext_ , 迫使生成器产生值 :

>>> g = fib()
>>> next(g)
1
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
5

间接地,如果您为循环提供纤维、列表初始化器、图普特初始化器或其他任何期望产生/产生值的对象,您将“组装”生成器,直到它不再产生(并返回):

results = []
for i in fib(30):       # consumes fib
    results.append(i) 
# can also be accomplished with
results = list(fib(30)) # consumes fib

类似地,图普特首发器:

>>> tuple(fib(5))       # consumes fib
(1, 1, 2, 3, 5)

生成器与功能不同, 因为它很懒。 它通过保持本地状态, 并允许您在需要的时候恢复运行来达到这个目的 。

当你喊叫它的时候,

f = fib()

Python 编译函数, 遇到产出关键字, 只需返回生成对象。 似乎没有什么帮助 。

当您要求它生成第一个值时, 它会直接或间接地执行它发现的所有语句, 直到它遇到一个产量, 然后它会返回您提供的产量和暂停值。 对于一个更能证明这一点的例子, 让我们使用一些打印电话( 如果在 Python 2 上用打印“ text ” 代替 打印“ text ” ):

def yielder(value):
    """ This is an infinite generator. Only use next on it """ 
    while 1:
        print("I'm going to generate the value for you")
        print("Then I'll pause for a while")
        yield value
        print("Let's go through it again.")

现在,输入REPL:

>>> gen = yielder("Hello, yield!")

您现在有一个生成对象, 正在等待一个命令来生成一个值。 使用下一个对象并查看打印的内容 :

>>> next(gen) # runs until it finds a yield
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

未引用的结果是打印的内容。 引用的结果是从产出中返回的内容。 现在再次调用 :

>>> next(gen) # continues from yield and runs again
Let's go through it again.
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

生成器记得它被按产出值暂停, 然后从那里恢复。 下一则消息被打印, 并搜索收益声明以在它上再次暂停( 原因是同时循环 ) 。

以下是一个简单的例子:

def isPrimeNumber(n):
    print "isPrimeNumber({}) call".format(n)
    if n==1:
        return False
    for x in range(2,n):
        if n % x == 0:
            return False
    return True

def primes (n=1):
    while(True):
        print "loop step ---------------- {}".format(n)
        if isPrimeNumber(n): yield n
        n += 1

for n in primes():
    if n> 10:break
    print "wiriting result {}".format(n)

产出:

loop step ---------------- 1
isPrimeNumber(1) call
loop step ---------------- 2
isPrimeNumber(2) call
loop step ---------------- 3
isPrimeNumber(3) call
wiriting result 3
loop step ---------------- 4
isPrimeNumber(4) call
loop step ---------------- 5
isPrimeNumber(5) call
wiriting result 5
loop step ---------------- 6
isPrimeNumber(6) call
loop step ---------------- 7
isPrimeNumber(7) call
wiriting result 7
loop step ---------------- 8
isPrimeNumber(8) call
loop step ---------------- 9
isPrimeNumber(9) call
loop step ---------------- 10
isPrimeNumber(10) call
loop step ---------------- 11
isPrimeNumber(11) call

我不是Python开发者,但对我来说,它似乎保持了程序流程的位置,而下一个循环则从“当量”的位置开始。 它似乎正在等待着这个位置,就在那个位置之前,它正在向外回报一个价值,而下一次将继续工作。

这似乎是一个有趣和好的能力:

Python 的输出关键字是做什么的 ?

答复大纲/摘要

函数, 调用时, 返回生成器。 发电机是循环器, 因为它们执行循环程序, 以便您可以对它进行循环。 也可以发送一个发电机信息, 使其在概念上成为共同的常规。 在 Python 3 中, 您可以将一个发电机从一个发电机到另一个发电机, 从两个方向调用。 (附录: 包括顶部的答案在内的几个答案, 并讨论在发电机中使用返回的方法 。)

发电机:

收益率只是功能定义中的法律内涵,而将收益率列入功能定义使其返回产生者。

发电机的想法来自其他语言(见脚注1),其实施方式各有不同。 在Python的发电机中,代码的执行在生产点被冻结。当发电机被调用(方法在下文讨论)时,再恢复执行,然后冻结在下一个生产点。

输出提供了执行循环协议的简单方法,由以下两种方法定义:__iter__和__ext_。这两种方法都使对象成为可与收藏模块的Exerator摘要基础类进行打印的复制器。

def func():
    yield 'I am'
    yield 'a generator!'

让我们进行一些反省:

>>> type(func)                 # A function with yield is still a function
<type 'function'>
>>> gen = func()
>>> type(gen)                  # but it returns a generator
<type 'generator'>
>>> hasattr(gen, '__iter__')   # that's an iterable
True
>>> hasattr(gen, '__next__')   # and with .__next__
True                           # implements the iterator protocol.

生成器类型是一个子迭代器类型 :

from types import GeneratorType
from collections.abc import Iterator

>>> issubclass(GeneratorType, Iterator)
True

如有必要,我们可以这样打字检查:

>>> isinstance(gen, GeneratorType)
True
>>> isinstance(gen, Iterator)
True

迭代器的一个特征是,一旦耗竭,您无法再利用或重置它:

>>> list(gen)
['I am', 'a generator!']
>>> list(gen)
[]

如果你想再次使用其功能,你必须再做一次(见脚注2):

>>> list(func())
['I am', 'a generator!']

可以按方案生成数据,例如:

def func(an_iterable):
    for item in an_iterable:
        yield item

上述简单生成器也相当于以下生成器 -- -- 由于Python 3.3, 您可以使用以下来源的产量:

def func(an_iterable):
    yield from an_iterable

但是,也允许向次级发电机授权,这一点将在下一节 " 与次级水泥合作授权 " 中加以解释。

计票:

窗体中显示一个表达式,该表达式允许将数据发送到生成器(见脚注3)

以下是一个例子,请注意收到的变量,该变量将指向发送到生成方的数据:

def bank_account(deposited, interest_rate):
    while True:
        calculated_interest = interest_rate * deposited 
        received = yield calculated_interest
        if received:
            deposited += received


>>> my_account = bank_account(1000, .05)

首先, 我们必须排队, 下一个是内建函数 。 它会调用合适的下一个或 下一步方法, 取决于您使用的 Python 版本 :

>>> first_year_interest = next(my_account)
>>> first_year_interest
50.0

现在我们可以将数据发送到生成器。 (“终结者”和“下一个”是一样的 ) :

>>> next_year_interest = my_account.send(first_year_interest + 1000)
>>> next_year_interest
102.5

合作社代表团到分科诊所分科

现在,请记住,Python 3的产量是可以得到的。 这使得我们可以将共同路线 委托给一个子烹饪:


def money_manager(expected_rate):
    # must receive deposited value from .send():
    under_management = yield                   # yield None to start.
    while True:
        try:
            additional_investment = yield expected_rate * under_management 
            if additional_investment:
                under_management += additional_investment
        except GeneratorExit:
            '''TODO: write function to send unclaimed funds to state'''
            raise
        finally:
            '''TODO: write function to mail tax info to client'''
        

def investment_account(deposited, manager):
    '''very simple model of an investment account that delegates to a manager'''
    # must queue up manager:
    next(manager)      # <- same as manager.send(None)
    # This is where we send the initial deposit to the manager:
    manager.send(deposited)
    try:
        yield from manager
    except GeneratorExit:
        return manager.close()  # delegate?

现在我们可以将功能委托给一个子生成器 并且它可以被一个发电机使用 就像上面那样:

my_manager = money_manager(.06)
my_account = investment_account(1000, my_manager)
first_year_return = next(my_account) # -> 60.0

现在模拟在账户中再增加1000, 加上账户的回报( 60.0 ) :

next_year_return = my_account.send(first_year_return + 1000)
next_year_return # 123.6

从PEP 380中,您可以阅读更多关于产量的确切语义。

其他方法:关闭和投掷

关闭方法在功能执行被冻结时提升发电机输出。 也可以被 __ del__ 调用, 这样您就可以设置任何清理代码, 用于处理发电机输出 :

my_account.close()

您也可以丢弃一个例外,该例外可在生成器中处理,或向用户传播:

import sys
try:
    raise ValueError
except:
    my_manager.throw(*sys.exc_info())

提高:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
  File "<stdin>", line 6, in money_manager
  File "<stdin>", line 2, in <module>
ValueError

结论 结论 结论 结论 结论

我认为,我已处理了下列问题的所有方面:

Python 的输出关键字是做什么的 ?

事实证明,产量是很大的。我相信我可以为此再增加更详尽的例子。如果你需要更多的或有建设性的批评,请在下面评论,让我知道。


附录:

顶级/接受的答复的优先程度**

使用列表作为示例。 参见我上面的引用, 但概括地说: 循环含有 ` irit_ 的方法返回一个迭代器。 一个迭代器另外提供了一种 . next_ 的方法, 以循环为暗号, 以循环为代号, 直到它升起 停止 试运行, 一旦它确实升起 停止 试运行, 它会继续这样做 。 然后它会使用一个发电机表达方式来描述一个发电机。 由于一个发电机表达方式只是创建一个代用器的方便方式, 它只会混淆物质, 而我们还没有到达产值部分 。 在控制发电机耗竭时, 他调用 . next 方法( 只在 Python 2 中有效 ) , 而不是使用 内建函数, 下一步。 调用下一个 (obj) 将是一个适当的间接层, 因为他的代码在 Python 3. Itertools 中不起作用 。 这与结果完全无关 。 没有讨论 与 Python 3 中产生新功能收益的方法提供的方法和 Python 。

上方/接受的回答是一个非常不完整的回答。

回答的精度表示在发电机的表达或理解中产生产量。

语法目前允许列表理解中的任何表达式 。

expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |
                     ('=' (yield_expr|testlist_star_expr))*)
...
yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist

由于产量是一种表达方式,有些人认为在理解或生成方表达方式中使用产量是令人感兴趣的,尽管没有提出特别好的使用方式。

CPython核心开发商正在讨论其备抵的折旧问题。

2017年1月30日19:05时,布雷特坎农写道:在太阳上,2017年1月29日,16:39克雷格·罗德里格斯写道:我同意这两种方法。把事情保留在Python 3的状态是不对的,IMHO。我的投票是语法错误,因为你没有得到你期望的语法。我同意这对我们来说是一个明智的结局,因为任何依赖当前行为的代码都非常聪明,无法维持。在到达那里时,我们可能想要:在2.7的Py3k警告中,用3.7的Py3k警告来表示警告或破坏警告。x语法错误,Nick。 -- Nick Coghlan ncoghlan at gmail.com {Brisbane,澳大利亚,Gmail. com {Brisbane。

此外,还有一个未决问题(10544)似乎指向从来就不是一个好主意(PyPy, PyPy, 写在Python的Python执行文件,

底线,直到CPython的开发者告诉我们别的情况: 不要在生成器表达或理解中放出产量。

发电机中的回程声明

在Python 3 中:

在发电机函数中, 返回语句表示发电机已完成, 并将导致 StopLiveration 上升。 返回的值( 如果有的话) 用作构建 StopLiveration 的参数, 并成为 StopIturation. value 属性 。

Python 2 中的历史注释 : “ 在生成器函数中, 返回语句不允许包含表达式_ 列表 。 在此情况下, 光返回表示生成器已经完成, 并将导致停止使用 。 ” 表达式列表基本上是用逗号分隔的任何多个表达式 - 基本上在 Python 2 中, 您可以返回停止生成器, 但无法返回一个值 。

脚注脚注

将生成器的概念引入 Python 的建议中引用了语言 CLU、 Sather 和 图标 。 一般的想法是, 函数可以维持内部状态, 并产生用户需要的中间数据点 。 这承诺在性能上优于其他方法, 包括Python 线性线性, 某些系统中甚至没有这种系统。 这意味着, 范围天体虽然是可循环的, 但却不是迭代器, 因为它们是可以再利用的 。 和列表一样, 它们的 ` eter_ 方法返回替换器对象 。 收益最初是作为声明引入的, 意思是它只能在代码块的线性起始处出现 。 现在, 收益产生一种收益表达方式 。 https://docs. python.org/2/reference/spoint_stmts.html# grammar- token- yeld_stmt 。 提出这一修改是为了让用户将数据发送到生成器中。 。 要发送数据, 发送数据时, 就必须将它指定它为某种东西, 。