Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

以下是基于收益率的简单方法, 用来计算Fibonacci系列, 解释如下:

def fib(limit=50):
    a, b = 0, 1
    for i in range(limit):
       yield b
       a, b = b, a+b

当你把这个输入你的REPL,然后尝试把它称为, 你会得到一个神秘的结果:

>>> fib()
<generator object fib at 0x7fa38394e3b8>

这是因为向 Python 发出的产出信号 表明您想要创建一个生成器, 即一个根据需求产生价值的物体。

那么,你如何生成这些值?这要么直接通过下一个使用内置函数来实现,要么间接地通过将内置函数输入一个消耗值的构造来实现。

使用下个() 内置函数, 您可以直接引用. extext/ __ extext_ , 迫使生成器产生值 :

>>> g = fib()
>>> next(g)
1
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
5

间接地,如果您为循环提供纤维、列表初始化器、图普特初始化器或其他任何期望产生/产生值的对象,您将“组装”生成器,直到它不再产生(并返回):

results = []
for i in fib(30):       # consumes fib
    results.append(i) 
# can also be accomplished with
results = list(fib(30)) # consumes fib

类似地,图普特首发器:

>>> tuple(fib(5))       # consumes fib
(1, 1, 2, 3, 5)

生成器与功能不同, 因为它很懒。 它通过保持本地状态, 并允许您在需要的时候恢复运行来达到这个目的 。

当你喊叫它的时候,

f = fib()

Python 编译函数, 遇到产出关键字, 只需返回生成对象。 似乎没有什么帮助 。

当您要求它生成第一个值时, 它会直接或间接地执行它发现的所有语句, 直到它遇到一个产量, 然后它会返回您提供的产量和暂停值。 对于一个更能证明这一点的例子, 让我们使用一些打印电话( 如果在 Python 2 上用打印“ text ” 代替 打印“ text ” ):

def yielder(value):
    """ This is an infinite generator. Only use next on it """ 
    while 1:
        print("I'm going to generate the value for you")
        print("Then I'll pause for a while")
        yield value
        print("Let's go through it again.")

现在,输入REPL:

>>> gen = yielder("Hello, yield!")

您现在有一个生成对象, 正在等待一个命令来生成一个值。 使用下一个对象并查看打印的内容 :

>>> next(gen) # runs until it finds a yield
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

未引用的结果是打印的内容。 引用的结果是从产出中返回的内容。 现在再次调用 :

>>> next(gen) # continues from yield and runs again
Let's go through it again.
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

生成器记得它被按产出值暂停, 然后从那里恢复。 下一则消息被打印, 并搜索收益声明以在它上再次暂停( 原因是同时循环 ) 。

其他回答

- 功能 - 返回。

发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。

names = ['Sam', 'Sarah', 'Thomas', 'James']


# Using function
def greet(name) :
    return f'Hi, my name is {name}.'
    
for each_name in names:
    print(greet(each_name))

# Output:   
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.


# using generator
def greetings(names) :
    for each_name in names:
        yield f'Hi, my name is {each_name}.'
 
for greet_name in greetings(names):
    print (greet_name)

# Output:    
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.

发电机看起来像一个函数,但行为举止却像一个迭代器。

发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。

def function():
    yield 1 # return this first
    yield 2 # start continue from here (yield don't execute above code once executed)
    yield 3 # give this at last (yield don't execute above code once executed)

for processed_data in function(): 
    print(processed_data)
    
#Output:

>>>1
>>>2
>>>3

注:放弃不应在尝试中.最终建造。

我本打算张贴“Beazley的“Python:基本参考”第19页,

另外,请注意, 产量可以作为发电机功能中的双重用途, 共程中可以使用。 虽然这与您的代码片断不相同, 但( ield) 也可以用作函数中的表达方式。 当调用者使用发送( ) 方法给方法发送一个值时, 共程将执行到遇到下一个( yeld) 语句时 。

生成器和共同路由是建立数据流类型应用程序的很酷的方法。 我认为值得知道在函数中产出语句的另一种用途。

所有的答案都是伟大的, 但对于新人来说有点困难。

我猜你已经得知回程声明了

作为类比,回归和收益是双胞胎。 回归意味着“ 回归和停止 ” , 而“ 回归”则意味着“回归,但继续 ” 。

尝试获得一份有回报的 num_ 列表 。

def num_list(n):
    for i in range(n):
        return i

运行它:

In [5]: num_list(3)
Out[5]: 0

你看,你只得到一个数字,而不是一个他们的名单。返回永远不允许你快乐地获胜,只要执行一次就退出。

产生结果

将返回替换为产出 :

In [10]: def num_list(n):
    ...:     for i in range(n):
    ...:         yield i
    ...:

In [11]: num_list(3)
Out[11]: <generator object num_list at 0x10327c990>

In [12]: list(num_list(3))
Out[12]: [0, 1, 2]

现在,你赢得了所有的数字。

与一次运行和停止的返回相比, 一次运行和一次运行, 一次运行和一次运行。 您可以将返回解释为一个返回, 一次返回作为全部返回。 这叫“ 易动 ” 。

再多走一步,我们就可以重新写出回报的收益声明

In [15]: def num_list(n):
    ...:     result = []
    ...:     for i in range(n):
    ...:         result.append(i)
    ...:     return result

In [16]: num_list(3)
Out[16]: [0, 1, 2]

这是关于产量的核心。

列表返回输出与目标产出的区别是:

您总是可以从列表对象中获取 [0, 1, 2] , 但只能从“ 对象输出输出” 中提取一次 。 因此, 它有一个新的名称生成对象, 如 Out[ 11] 所示 : <generator 对象 num_ list at 0x10327c990> 。

最后,作为格罗克语的比喻:

双胞胎名单和发电机是双胞胎

以下是一个简单的例子:

def isPrimeNumber(n):
    print "isPrimeNumber({}) call".format(n)
    if n==1:
        return False
    for x in range(2,n):
        if n % x == 0:
            return False
    return True

def primes (n=1):
    while(True):
        print "loop step ---------------- {}".format(n)
        if isPrimeNumber(n): yield n
        n += 1

for n in primes():
    if n> 10:break
    print "wiriting result {}".format(n)

产出:

loop step ---------------- 1
isPrimeNumber(1) call
loop step ---------------- 2
isPrimeNumber(2) call
loop step ---------------- 3
isPrimeNumber(3) call
wiriting result 3
loop step ---------------- 4
isPrimeNumber(4) call
loop step ---------------- 5
isPrimeNumber(5) call
wiriting result 5
loop step ---------------- 6
isPrimeNumber(6) call
loop step ---------------- 7
isPrimeNumber(7) call
wiriting result 7
loop step ---------------- 8
isPrimeNumber(8) call
loop step ---------------- 9
isPrimeNumber(9) call
loop step ---------------- 10
isPrimeNumber(10) call
loop step ---------------- 11
isPrimeNumber(11) call

我不是Python开发者,但对我来说,它似乎保持了程序流程的位置,而下一个循环则从“当量”的位置开始。 它似乎正在等待着这个位置,就在那个位置之前,它正在向外回报一个价值,而下一次将继续工作。

这似乎是一个有趣和好的能力:

生成关键字用于查点/字符,其中函数预期将返回一个输出。我想引用这个非常简单的例A:

# example A
def getNumber():
    for r in range(1,10):
        return r

以上函数只返回一次, 即使它被多次调用。 现在如果我们以收益率替换返回, 如例B :

# example B
def getNumber():
    for r in range(1,10):
        yield r

当第一次叫2时,它会返回1,当再次叫2时,3,4,然后它会递增到10。

虽然B的例子在概念上是真实的,但要用Python 3来称呼它,我们必须采取以下行动:


g = getNumber() #instance
print(next(g)) #will print 1
print(next(g)) #will print 2
print(next(g)) #will print 3

# so to assign it to a variables
v = getNumber()
v1 = next(v) #v1 will have 1
v2 = next(v) #v2 will have 2
v3 = next(v) #v3 will have 3