Python 中产出关键字的用法是什么? 它能做什么?

例如,我试图理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法 _get_child_camedates 被调用时会怎样? 列表是否返回? 单一个元素吗? 是否再次调用? 以后的电话何时停止?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆,与完整的源:模块mspace链接。


当前回答

虽然很多答案都表明你为什么用一个产量来创建发电机, 但对于产量来说却有更多的用途。 做一个共同的习惯很容易, 这样可以让信息在两个代码区块之间传递。 我不再重复任何已经给出的关于使用产量来创建发电机的好例子 。

为了帮助理解下一个代码中的产值, 您可以用手指通过任何有产值的代码来追踪循环。 每次你的手指碰到产量的代码时, 您必须等待下一个或发送输入。 调用下一个代码时, 您可以跟踪代码, 直到你到达产量... 产值右侧的代码被评估并返回到调用者... 然后您等待。 当调用下一个代码时, 您会通过代码执行另一个循环。 但是, 您会注意到, 产值也可以用一个发送方式来使用。 发送时, 将会将一个调用器的值发送到产值中 。 如果发送了, 则会收到发送的值, 然后将其从左侧吐出... , 然后通过代码的跟踪直到您再次到达产量( 返回最后的值, 如下一个调用 ) 。

例如:

>>> def coroutine():
...     i = -1
...     while True:
...         i += 1
...         val = (yield i)
...         print("Received %s" % val)
...
>>> sequence = coroutine()
>>> sequence.next()
0
>>> sequence.next()
Received None
1
>>> sequence.send('hello')
Received hello
2
>>> sequence.close()

其他回答

Python 中的输出关键字用于退出代码,而不会扰乱本地变量的状况,当函数再次被称作“执行”时,从我们离开代码的最后一点开始。

以下示例显示了产量的作用:

def counter():
    x=2
    while x < 5:
        yield x
        x += 1
        
print("Initial value of x: ", counter()) 

for y in counter():
    print(y)

上述代码产生以下输出:

Initial value of x:  <generator object counter at 0x7f0263020ac0>
2
3
4

对于那些更喜欢最低限度工作实例的人来说,考虑一下这次交互式的Python会议:

>>> def f():
...   yield 1
...   yield 2
...   yield 3
... 
>>> g = f()
>>> for i in g:
...   print(i)
... 
1
2
3
>>> for i in g:
...   print(i)
... 
>>> # Note that this time nothing was printed

下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。

我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:

我打电话给你并告诉你,我想要一个以特定方式计算的数字序列,我告诉你算法是什么。 这个步骤对应着定义发电机的函数, 也就是包含一个产出的函数。 稍后我告诉你, “ 好, 准备好告诉我数字的序列 ” 。 这个步骤对应着调用发电机的函数, 返回一个发电机对象。 注意不要告诉我任何数字; 你只是拿起你的纸张和铅笔。 我问你, “ 请告诉我下一个数字 ” , 然后你告诉我第一个数字; 之后, 你等着我问你下一个数字。 这是你的任务, 也就是确定你所在的位置, 你已经说过的数字, 下一个数字是什么。 我不在乎细节。 这个步骤相当于在发电机对象上调用下一个( 发电机) 号码的方法。 ( Python 2, next) 注意, 这是一个发电机对象的方法; 在 Python 3, 它被命名为...

这是生成器所做的( 包含一个产值的函数 ) ; 它开始在第一个( ) 上执行, 当它做一个产值时暂停, 当要求下一个( ) 值时, 它会从最后一点继续 。 它的设计完全符合 Python 的循环协议, 协议描述如何按顺序要求值 。

迭代协议最著名的用户是 Python 的命令用户。 所以, 当你做 :

for item in sequence:

序列是否是一个列表、字符串、字典或上述生成对象并不重要;结果是一样的:您逐个阅读序列中的项目。

请注意,定义含有产出关键字的函数不是创建生成器的唯一方法;它只是创建生成器的最简单的方法。

欲知更准确的信息,请阅读Python文件中的迭代机类型、产量说明和发电机。

通常情况下, 它会用来创建一个不起作用的代名词。 将“ ield” 当作您函数的附加件, 以及您作为数组的函数。 如果符合某些标准, 您可以在函数中添加此值, 使之成为代名词 。

arr=[]
if 2>0:
   arr.append(2)

def func():
   if 2>0:
      yield 2

两者的输出结果相同。

使用产量的主要优势是创建迭代器。 迭代器在即时计算时不会计算每个项目的价值。 它们只在您要求时才计算。 这被称为懒惰评价 。

和每个答案一样, 收益被用于创建序列生成器。 它用于动态生成某些序列。 例如, 在按行阅读网络文件行时, 您可以使用以下的收益函数 :

def getNextLines():
   while con.isOpen():
       yield con.read()

您可在您的代码中使用以下代码:

for line in getNextLines():
    doSomeThing(line)

执行控制控制

执行控制将会从 GetNextLines () 转到执行时的循环。 因此, 每次引用 NextLines () 时, 执行都会从上次暂停处开始 。

因此,简言之,一个函数具有以下代码

def simpleYield():
    yield "first time"
    yield "second time"
    yield "third time"
    yield "Now some useful value {}".format(12)

for i in simpleYield():
    print i

将打印

"first time"
"second time"
"third time"
"Now some useful value 12"