何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

收益率与返回相似。区别是:

收益率使函数可适用(在下个示例中)primes(n = 1)函数成为可使用性) 。
它的基本意思是 函数下次被调用时, 它将继续从它离开的地方( 位于yield expression).

def isprime(n):
    if n == 1:
        return False
    for x in range(2, n):
        if n % x == 0:
            return False
    else:
        return True

def primes(n = 1):
   while(True):
       if isprime(n): yield n
       n += 1 

for n in primes():
    if n > 100: break
    print(n)

在上述例子中,如果isprime(n)这是真的, 它会返回质号。 在下次迭代中, 它会从下一行继续

n += 1  

其他回答

这是关于什么的心理形象yield确实如此。

我想把一条线视为有堆叠(即使它不是用这种方式执行的)。

当调用一个普通函数时, 它会将其本地变量放入堆栈, 进行一些计算, 然后清除堆栈和返回。 其本地变量的值再也不会被看到 。

yield函数,当其代码开始运行时(即函数被调用后,返回一个生成对象,该生成对象next()然后引用方法),它同样将其本地变量放在堆叠上,并计算一段时间。但是当它击中yield语句,在清理其部分堆叠并返回之前,它先对本地变量进行速记,然后将其存储在生成器对象中。它还写下它目前在其代码中的位置(即特定yield声明))

所以这是一种冷冻功能 发电机挂在了上面

何时next()函数随后被调用, 它从堆叠上取回函数的物品, 并重新激活它。 函数继续从剩余部分进行计算, 忽略了它刚刚在冷藏中度过了永恒时间的事实 。

比较以下实例:

def normalFunction():
    return
    if False:
        pass

def yielderFunction():
    return
    if False:
        yield 12

当我们调用第二个函数时,它的行为与第一个功能非常不同。yield声明可能无法取得, 但如果它存在任何地方, 它会改变我们所处理的事物的性质。

>>> yielderFunction()
<generator object yielderFunction at 0x07742D28>

电 电 电yielderFunction()(也许用它来命名这种东西是个好主意)yielder可读性前缀。 )

>>> gen = yielderFunction()
>>> dir(gen)
['__class__',
 ...
 '__iter__',    #Returns gen itself, to make it work uniformly with containers
 ...            #when given to a for loop. (Containers return an iterator instead.)
 'close',
 'gi_code',
 'gi_frame',
 'gi_running',
 'next',        #The method that runs the function's body.
 'send',
 'throw']

缩略gi_codegi_frame字段中存储冻结状态的字段。dir(..),我们可以确认 我们的心理模式 上面是可信的。

简单简单简单yield计算 fibonacci 序列的基础方法,解释如下:

def fib(limit=50):
    a, b = 0, 1
    for i in range(limit):
       yield b
       a, b = b, a+b

当你把这个输入你的REPL,然后尝试把它称为, 你会得到一个神秘的结果:

>>> fib()
<generator object fib at 0x7fa38394e3b8>

这是因为:yield发送到 Python 的信号, 您想要创建发电机发电机,即,一个根据需求产生价值的物体。

那么,您如何生成这些值? 可以通过使用内置函数直接实现next,或间接地,通过将其喂养到消耗价值的建筑上。

使用内置next()函数,直接引用.next/__next__迫使发电机产生一个价值:

>>> g = fib()
>>> next(g)
1
>>> next(g)
1
>>> next(g)
2
>>> next(g)
3
>>> next(g)
5

间接提供fib至 afor环环, alist初始初始化器, atuple初始化器, 或其他任何期望生成/ 产生值的对象, 您会“ 组装” 生成器, 直到它无法生成更多值( 并返回 ) :

results = []
for i in fib(30):       # consumes fib
    results.append(i) 
# can also be accomplished with
results = list(fib(30)) # consumes fib

同样,tuple初始化器 :

>>> tuple(fib(5))       # consumes fib
(1, 1, 2, 3, 5)

生成器与功能不同, 因为它很懒。 它通过保持本地状态, 并允许您在需要的时候恢复运行来达到这个目的 。

当你们第一次祈祷的时候,fib称其为:

f = fib()

Python 编译函数,遇到yieldkeyword and simply return a generate objects back at you. 似乎没有什么帮助。

当您要求它生成第一个值时,它直接或间接地执行它发现的所有语句,直到它遇到一个yield,然后,它产生回 价值,你提供yield并暂停。 举例来证明这一点, 让我们使用一些print电话(取代电话)print "text"如果Python 2 上写着:

def yielder(value):
    """ This is an infinite generator. Only use next on it """ 
    while 1:
        print("I'm going to generate the value for you")
        print("Then I'll pause for a while")
        yield value
        print("Let's go through it again.")

现在,输入REPL:

>>> gen = yielder("Hello, yield!")

您现在有一个生成对象, 正在等待命令来生成值。 使用next并查看打印的内容 :

>>> next(gen) # runs until it finds a yield
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

未引用的结果是打印的内容。引用的结果是返回的内容yield调来next现在再次:

>>> next(gen) # continues from yield and runs again
Let's go through it again.
I'm going to generate the value for you
Then I'll pause for a while
'Hello, yield!'

发电机记得它被停停在yield value从那里打印下一条消息并搜索yield暂停该语句时(由于while(循环))

yield函数的返回元素。区别是,yield将一个元素转换成一个生成器。一个生成器的行为就像一个函数,直到某东西“当”为“当”为止。发电机停止直到下一个调用,并且从与开始的完全相同的点继续。您可以通过调用所有“当”值的序列,从一个角度获得所有“当”值的序列。list(generator()).

又一个TRL;DR

列表中的迭代器: next()返回列表的下一个元素

热机发电机: next()将计算苍蝇上的下一个元素( 执行代码)

您可以看到生成/生成器作为手动运行控制流量从外部( 如继续循环一步骤) 调用next无论流量如何复杂。

Note发电机是不无一个普通函数。它会像本地变量( stack) 一样记得以前的状态( stack) 。请参看其他答案或文章以详细解释。生成器只能是曾经变热过一次. 你可以没有yield,但它不会是那么好, 所以它可以被认为是“非常好”的语言糖。

许多人使用return而不是yield,但在某些情况下yield能够更有效和更方便地开展工作。

以下是一个例子:yield绝对是最好的:

返回返回(在职能)

import random

def return_dates():
    dates = [] # With 'return' you need to create a list then return it
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        dates.append(date)
    return dates

收益率(在职能)

def yield_dates():
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        yield date # 'yield' makes a generator automatically which works
                   # in a similar way. This is much more efficient.

呼叫功能

dates_list = return_dates()
print(dates_list)
for i in dates_list:
    print(i)

dates_generator = yield_dates()
print(dates_generator)
for i in dates_generator:
    print(i)

两种功能都做相同的事情,但yield使用三行而不是五行, 并有一个更少的变量需要担心 。

这是代码的结果:

Output

正如你可以看到两个函数都做相同的事情。唯一的区别是return_dates()给出列表并yield_dates()给发电机。

真实生活中的范例就是 逐行读取文件行 或者你只是想制造一个发电机