何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

要理解的快捷键yield

当您看到一个函数yield语句,应用这个简单易懂的把戏来理解会发生什么:

  1. 插入一行result = []3⁄4 ̄ ̧漯B
  2. 替换各yield exprresult.append(expr).
  3. 插入一行return result函数的底部。
  4. - 耶 - 不再yield语句! 读取并找出代码 。
  5. 将函数与原始定义比较。

这个把戏也许能让你了解 函数背后的逻辑, 但实际发生什么了?yield与以列表为基础的方法发生的情况大不相同。 在许多情况下, 收益率方法会提高记忆效率和速度。 在其他情况下, 这个把戏会使你陷入无穷无尽的循环中, 即使最初的函数效果很好。 阅读更多来学习...

不要弄乱你的循环器 循环器和发电机

首先,动态自动交换协议- 当你写作时

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

  1. 获得一个循环器用于mylist:

    调调iter(mylist)->此返回一个带有next()方法(或)__next__()Python 3 中。

    [这是大多数人忘记告诉你的一步]

  2. 使用迭代器绕过项目 :

    继续叫next()从第1步返回的迭代器上的迭代器 方法上的迭代器 。next()指定用于x并执行环环体。如果有例外StopIteration从内部筹集next(),这意味着循环器中没有更多的值,循环就退出了。

真相是 Python 随时随地执行上述两步环绕环绕对象的内容 - 所以它可能是循环的, 但它也可以是代码otherlist.extend(mylist)(此处(此处)otherlist是 Python 列表)。

mylist易 易 易 性因为它执行了循环协议。在用户定义的类中,您可以执行__iter__()使类的示例可易易易操作的方法。 此方法应该返回振动器对象。next()两种方法都可实施。__iter__()next()在同一类同级同级同级同级同级同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同同同班同班同班同班同班同同班同班同班同班同班同班同同同班同班同班同班同班同同班同同同同同班同班同班同班同同班同班同班同班同同同同同同同班同班同班同同同同同同同班同同同同同同班同__iter__()返回返回self。这将对简单案例有效,但当您想要两个迭代器同时绕过同一个对象时,则不会有效。

这就是传动程序,许多物体执行这个程序:

  1. 内置列表、词典、图普尔、设置和文件。
  2. 执行的用户定义的分类__iter__().
  3. 发电机。

注 afor循环不知道它处理的是什么样的物体 - 它只是遵循循环程序, 并且很乐意按项目逐项获得它调用的项目next(). 内置清单逐项归还其物项,词典则逐项归还键键一个一个一个一个,文件返回线条一个一个一个一个一个,等等。 和发电机返回。 。 。yield输入 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

取代yield如果您有三种语句return以 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国f123()只有第一个被执行, 而功能会退出。 但是,f123()没有普通函数为普通函数的普通函数为普通函数。f123()被召唤的,被召唤的,被召唤的,被召唤的,返回输出语句中的任何值。它返回生成对象。它返回一个生成对象。此外,函数并不真正退出 -它进入中止状态。当for循环试图环绕到发电机对象上, 函数从中止状态恢复 。yield执行下一行代码,在此情况下,ayield语句,然后返回该语句,作为下一个项目返回该语句。这种情况发生到函数退出时,然后生成器产生StopIteration,并循环出口。

因此,发电机对象有点像一个适配器—— 一方面,它展示了迭代程序,通过曝光__iter__()next()保存for循环快乐。 但是,在另一端, 它运行的函数足够从中获取下一个值, 并将其重新置于暂停模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但使用相同的逻辑逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 例如, 如果您有无限循环, 或者当您有很长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类“ 某些东西 ” , 将国家保留在成员中, 并在成员中执行下一个逻辑步骤 。next()(或)__next__()Python 3 方法中的代码 。 取决于逻辑, 内部的代码 。next()方法最终可能会看起来非常复杂,容易出现虫子。 这里的发电机提供了清洁和容易的解决方案。

其他回答

简单解答

函数至少包含一个时yield语句,函数自动成为发电机功能。当您调用发电机功能时, python 在发电机功能中执行代码,直到yield发生声明。yield当您再次调用发电机功能时, python 继续从冻结位置执行发电机功能中的代码,直到yield发电机函数执行代码直到发电机功能用完时没有yield语句。

基准基准基准基准基准基准基准

创建列表并返回它 :

def my_range(n):
    my_list = []
    i = 0
    while i < n:
        my_list.append(i)
        i += 1
    return my_list

@profile
def function():
    my_sum = 0
    my_values = my_range(1000000)
    for my_value in my_values:
        my_sum += my_value

function()

结果有:

Total time: 1.07901 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     9                                           @profile
    10                                           def function():
    11         1          1.1      1.1      0.0      my_sum = 0
    12         1     494875.0 494875.0     45.9      my_values = my_range(1000000)
    13   1000001     262842.1      0.3     24.4      for my_value in my_values:
    14   1000000     321289.8      0.3     29.8          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     9   40.168 MiB   40.168 MiB           1   @profile
    10                                         def function():
    11   40.168 MiB    0.000 MiB           1       my_sum = 0
    12   78.914 MiB   38.746 MiB           1       my_values = my_range(1000000)
    13   78.941 MiB    0.012 MiB     1000001       for my_value in my_values:
    14   78.941 MiB    0.016 MiB     1000000           my_sum += my_value

在飞行上生成值 :

def my_range(n):
    i = 0
    while i < n:
        yield i
        i += 1

@profile
def function():
    my_sum = 0
    
    for my_value in my_range(1000000):
        my_sum += my_value

function()

结果有:

Total time: 1.24841 s
Timer unit: 1e-06 s

Line #      Hits         Time  Per Hit   % Time  Line Contents
==============================================================
     7                                           @profile
     8                                           def function():
     9         1          1.1      1.1      0.0      my_sum = 0
    10
    11   1000001     895617.3      0.9     71.7      for my_value in my_range(1000000):
    12   1000000     352793.7      0.4     28.3          my_sum += my_value



Line #    Mem usage    Increment  Occurences   Line Contents
============================================================
     7   40.168 MiB   40.168 MiB           1   @profile
     8                                         def function():
     9   40.168 MiB    0.000 MiB           1       my_sum = 0
    10
    11   40.203 MiB    0.016 MiB     1000001       for my_value in my_range(1000000):
    12   40.203 MiB    0.020 MiB     1000000           my_sum += my_value

摘要摘要摘要

生成器函数需要稍多一点时间来执行, 而不是返回列表但少用内存的函数 。

要理解的快捷键yield

当您看到一个函数yield语句,应用这个简单易懂的把戏来理解会发生什么:

  1. 插入一行result = []3⁄4 ̄ ̧漯B
  2. 替换各yield exprresult.append(expr).
  3. 插入一行return result函数的底部。
  4. - 耶 - 不再yield语句! 读取并找出代码 。
  5. 将函数与原始定义比较。

这个把戏也许能让你了解 函数背后的逻辑, 但实际发生什么了?yield与以列表为基础的方法发生的情况大不相同。 在许多情况下, 收益率方法会提高记忆效率和速度。 在其他情况下, 这个把戏会使你陷入无穷无尽的循环中, 即使最初的函数效果很好。 阅读更多来学习...

不要弄乱你的循环器 循环器和发电机

首先,动态自动交换协议- 当你写作时

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

  1. 获得一个循环器用于mylist:

    调调iter(mylist)->此返回一个带有next()方法(或)__next__()Python 3 中。

    [这是大多数人忘记告诉你的一步]

  2. 使用迭代器绕过项目 :

    继续叫next()从第1步返回的迭代器上的迭代器 方法上的迭代器 。next()指定用于x并执行环环体。如果有例外StopIteration从内部筹集next(),这意味着循环器中没有更多的值,循环就退出了。

真相是 Python 随时随地执行上述两步环绕环绕对象的内容 - 所以它可能是循环的, 但它也可以是代码otherlist.extend(mylist)(此处(此处)otherlist是 Python 列表)。

mylist易 易 易 性因为它执行了循环协议。在用户定义的类中,您可以执行__iter__()使类的示例可易易易操作的方法。 此方法应该返回振动器对象。next()两种方法都可实施。__iter__()next()在同一类同级同级同级同级同级同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同同同班同班同班同班同班同同班同班同班同班同班同班同同同班同班同班同班同班同同班同同同同同班同班同班同班同同班同班同班同班同同同同同同同班同班同班同同同同同同同班同同同同同同班同__iter__()返回返回self。这将对简单案例有效,但当您想要两个迭代器同时绕过同一个对象时,则不会有效。

这就是传动程序,许多物体执行这个程序:

  1. 内置列表、词典、图普尔、设置和文件。
  2. 执行的用户定义的分类__iter__().
  3. 发电机。

注 afor循环不知道它处理的是什么样的物体 - 它只是遵循循环程序, 并且很乐意按项目逐项获得它调用的项目next(). 内置清单逐项归还其物项,词典则逐项归还键键一个一个一个一个,文件返回线条一个一个一个一个一个,等等。 和发电机返回。 。 。yield输入 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

取代yield如果您有三种语句return以 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国f123()只有第一个被执行, 而功能会退出。 但是,f123()没有普通函数为普通函数的普通函数为普通函数。f123()被召唤的,被召唤的,被召唤的,被召唤的,返回输出语句中的任何值。它返回生成对象。它返回一个生成对象。此外,函数并不真正退出 -它进入中止状态。当for循环试图环绕到发电机对象上, 函数从中止状态恢复 。yield执行下一行代码,在此情况下,ayield语句,然后返回该语句,作为下一个项目返回该语句。这种情况发生到函数退出时,然后生成器产生StopIteration,并循环出口。

因此,发电机对象有点像一个适配器—— 一方面,它展示了迭代程序,通过曝光__iter__()next()保存for循环快乐。 但是,在另一端, 它运行的函数足够从中获取下一个值, 并将其重新置于暂停模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但使用相同的逻辑逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 例如, 如果您有无限循环, 或者当您有很长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类“ 某些东西 ” , 将国家保留在成员中, 并在成员中执行下一个逻辑步骤 。next()(或)__next__()Python 3 方法中的代码 。 取决于逻辑, 内部的代码 。next()方法最终可能会看起来非常复杂,容易出现虫子。 这里的发电机提供了清洁和容易的解决方案。

失败给了你一台发电机

def get_odd_numbers(i):
    return range(1, i, 2)
def yield_odd_numbers(i):
    for x in range(1, i, 2):
       yield x
foo = get_odd_numbers(10)
bar = yield_odd_numbers(10)
foo
[1, 3, 5, 7, 9]
bar
<generator object yield_odd_numbers at 0x1029c6f50>
bar.next()
1
bar.next()
3
bar.next()
5

如你所见,第一种情况foo将整个列表同时保留在记忆中。 对于包含 5 个元素的列表来说, 这不是什么大问题, 但如果您想要 5 百万 的列表, 那又会怎样 ? 这不仅仅是一个巨大的记忆食用器, 在函数被调用时, 它还要花费很多时间来构建 。

在第二个案件中,bar发电机是可循环的 也就是说你可以用在for循环等, 但每个值只能存取一次 。 所有值也并非同时存储在记忆中; 生成器对象“ Remember ” 。 上次您称之为循环时, 生成器对象“ remember ” 正在循环中, 这样, 如果您正在使用一个可( 说) 的转号, 计为 500 亿, 那么您不必同时计为 500 亿, 然后存储500 亿 个数字来进行计算 。

再者,这是一个相当巧妙的例子,如果你真想数到500亿,你可能会使用滑板。 () :

这是发电机中最简单的使用实例。 正如您所说, 它可以用来写高效的变换, 使用产量将东西推到调用堆叠上, 而不是使用某种堆叠变量。 发电机也可以用于专门的树道, 以及各种其它方式 。

什么是yieldPython的关键字是用吗?

答复大纲/摘要

  • 函数函数函数函数yield当呼唤,返回返回 a发电机发电机.
  • 发电机是迭代器,因为它们实施动态自动交换协议这样你就可以绕过他们了
  • 发电机也可以已发送信息使它在概念上成为共礼管.
  • 在Python 3,你可以代表代表从一个发电机到另一个发电机,双向yield from.
  • (附录对几个答案,包括前一个答案,并讨论使用return在发电机中。 )

发电机:

yield只是在功能定义中的法律内涵,而且列入《公约》yield在函数定义中,函数定义使其返回生成器。

发电机的构想来自其他语文(见脚注1),其实施方式各有不同。冻结当发电机被调用(方法将在下文讨论)时,恢复执行,然后冻结在下一个产地。

yield简易的给养,执行循环协议由以下两种方法界定:__iter____next__。这两种方法都使对象成为可键入检查对象的迭代器。Iterator基础摘要类collections模块。

def func():
    yield 'I am'
    yield 'a generator!'

让我们进行一些反省:

>>> type(func)                 # A function with yield is still a function
<type 'function'>
>>> gen = func()
>>> type(gen)                  # but it returns a generator
<type 'generator'>
>>> hasattr(gen, '__iter__')   # that's an iterable
True
>>> hasattr(gen, '__next__')   # and with .__next__
True                           # implements the iterator protocol.

生成器类型是一个子迭代器类型 :

from types import GeneratorType
from collections.abc import Iterator

>>> issubclass(GeneratorType, Iterator)
True

如有必要,我们可以这样打字检查:

>>> isinstance(gen, GeneratorType)
True
>>> isinstance(gen, Iterator)
True

A. 单Iterator 即已用尽,您不能重新使用或重置它:

>>> list(gen)
['I am', 'a generator!']
>>> list(gen)
[]

如果你想再次使用其功能,你必须再做一次(见脚注2):

>>> list(func())
['I am', 'a generator!']

可以按方案生成数据,例如:

def func(an_iterable):
    for item in an_iterable:
        yield item

上述简单生成器也相当于以下生成器 -- -- 从Python 3.3来看,您可以使用yield from:

def func(an_iterable):
    yield from an_iterable

不过,yield from还允许向次级发电机授权,将在下一节 " 与子大麻合作的代表团 " 中加以解释。

计票:

yield窗体中的表达式,该表达式允许将数据发送到生成器(见脚注3)

举一个例子,请注意received变量,该变量将指向发送到生成方的数据:

def bank_account(deposited, interest_rate):
    while True:
        calculated_interest = interest_rate * deposited 
        received = yield calculated_interest
        if received:
            deposited += received


>>> my_account = bank_account(1000, .05)

首先,我们必须排队 发电机与内建功能,nextnext__next__方法, 取决于您使用的 Python 版本 :

>>> first_year_interest = next(my_account)
>>> first_year_interest
50.0

现在我们可以把数据传送到发电机里了发送中发送None与调用相同next.) :

>>> next_year_interest = my_account.send(first_year_interest + 1000)
>>> next_year_interest
102.5

合作代表团yield from

现在,回顾yield fromPython 3 提供。 这让我们可以将 共同路线 委托给子coustine :


def money_manager(expected_rate):
    # must receive deposited value from .send():
    under_management = yield                   # yield None to start.
    while True:
        try:
            additional_investment = yield expected_rate * under_management 
            if additional_investment:
                under_management += additional_investment
        except GeneratorExit:
            '''TODO: write function to send unclaimed funds to state'''
            raise
        finally:
            '''TODO: write function to mail tax info to client'''
        

def investment_account(deposited, manager):
    '''very simple model of an investment account that delegates to a manager'''
    # must queue up manager:
    next(manager)      # <- same as manager.send(None)
    # This is where we send the initial deposit to the manager:
    manager.send(deposited)
    try:
        yield from manager
    except GeneratorExit:
        return manager.close()  # delegate?

现在我们可以将功能委托给一个子生成器 并且它可以被一个发电机使用 就像上面那样:

my_manager = money_manager(.06)
my_account = investment_account(1000, my_manager)
first_year_return = next(my_account) # -> 60.0

现在模拟在账户中再增加1000, 加上账户的回报( 60.0 ) :

next_year_return = my_account.send(first_year_return + 1000)
next_year_return # 123.6

您可以阅读更多关于yield fromPEP380号

其他方法:关闭和投掷

缩略close方法生成GeneratorExit功能执行被冻结时, 这也会被调用 。__del__以便您可以设置任何清理代码, 用于处理GeneratorExit:

my_account.close()

您也可以丢弃一个例外,该例外可在生成器中处理,或向用户传播:

import sys
try:
    raise ValueError
except:
    my_manager.throw(*sys.exc_info())

提高:

Traceback (most recent call last):
  File "<stdin>", line 4, in <module>
  File "<stdin>", line 6, in money_manager
  File "<stdin>", line 2, in <module>
ValueError

结论 结论 结论 结论 结论

我认为,我已处理了下列问题的所有方面:

什么是yieldPython的关键字是用吗?

事实证明yield我肯定我可以为此再增加更详尽的例子。如果你们想要更多或有建设性的批评,请在下面评论,让我知道。


附录:

顶级/接受的答复的优先程度**

  • 它被混淆了 是什么制造了易 易 易 性,仅以列表作为示例。见以上我的引用,但摘要:a易 易 易 性具有 a 的__iter__返回方法返回振动器。 A. A.振动器额外提供a.__next__方法,该方法隐含地称为:for循环直到它升起StopIteration,一旦它升起StopIteration它将继续这样做。
  • 然后,它用发电机表达式来描述发电机是什么。 因为发电机表达式只是创建一个振动器,它只是混淆了事情, 而我们仍然还没有达到yield部分。
  • 控制发电机耗竭他呼唤.next方法(仅在Python 2 中有效),当他应该使用内设函数时,next调用next(obj)这是一种适当的间接分解层,因为他的代码在Python 3号行不通。
  • 这跟什么无关yield完全没有。
  • 不讨论采用哪些方法yield与新功能一起提供yield fromPython 3 号的Python 3。

上方/接受的回答是一个非常不完整的回答。

答复的精度答复建议yield中显示或理解生成方的表达或理解。

语法目前允许列表理解中的任何表达式 。

expr_stmt: testlist_star_expr (annassign | augassign (yield_expr|testlist) |
                     ('=' (yield_expr|testlist_star_expr))*)
...
yield_expr: 'yield' [yield_arg]
yield_arg: 'from' test | testlist

由于产量是一种表达方式,有些人认为在理解或生成方表达方式中使用产量是令人感兴趣的,尽管没有提出特别好的使用方式。

CPython 核心开发者是讨论其津贴的折旧问题从邮件列表中找到一个相关的邮件 :

2017年1月30日19:05时,

2017年1月29日17:39Craig Rodrigues写道:

我不管用哪一种方法都行,把事情和在Python 3的一样丢在一边是不好的,IMHO。

我的投票是 语法错误,因为你没有得到 你期望的语法。

我同意这对我们来说是个明智的地方 因为任何依靠当前行为的守则 都太聪明了 无法维持下去

就到达那里而言,我们很可能想要:

  • 3.7年的语法警告或折旧警告
  • 2.7.x.x.中的Py3k警告
  • 3.8 中的语法rror

干杯,尼克。

- Nick Coghlan ncoghlan at gmail.com Brisbane, 澳大利亚布里斯班

此外,还有未决问题(10544)这一点似乎指着着《公约》和《公约》从未是一个好主意(PyPy, PyPython 的 Python 执行书写在 Python 上, 已经在提高语法警告 。 )

直至CPython的开发商告诉我们:别放yield中显示或理解生成方的表达或理解。

缩略return生成器中的语句

Python 3:

在发电机功能中,return声明中表示发电机已经完成,并将导致StopIteration返回的值(如果有的话)用作构建的论据。StopIteration成为StopIteration.value属性。

历史记录,Python 2: "在发电机功能中,return不允许包含语句expression_list在这种背景下,光return表示发电机完成并导致StopIteration将升起。expression_list基本上是用逗号分隔的任意数表达式 - 基本上是在 Python 2 中, 您可以用return,但你不能返回一个值。

脚注脚注

  1. 在向Python引入发电机概念的提案中,提到了CLU、Sather和“图标”等语言。 通常的想法是,功能可以维持内部状态,并产生用户需要的中间数据点。 这保证了这一功能能够维持内部状态,并产生中间数据点。业绩优于其他方法,包括Python线在某些系统上甚至都找不到

  2. 这意味着,例如,range对象不是物体Iteratori 尽管它们是可循环的, 因为它们可以被再利用。就像列表一样,它们__iter__方法返回迭代对象。

  3. yield最初作为声明被引入,意思是它只能出现在代码块的线条开头。yield创建收益表达式 。https://docs.python.org/2/reference/simple_stmts.html#grammar-token-yield_stmt这一变化是:拟议拟议拟议数允许用户像收到数据一样将数据发送到生成器中。 要发送数据, 就必须能够将数据指定给某些东西, 因此, 声明是行不通的 。

yield就像有人要你做5个蛋糕。如果你做了至少一个蛋糕, 你可以在做其他蛋糕的时候给他们吃。

In [4]: def make_cake(numbers):
   ...:     for i in range(numbers):
   ...:         yield 'Cake {}'.format(i)
   ...:

In [5]: factory = make_cake(5)

factory称为“发电机”的发电机,它使你们做蛋糕。如果你们打电话,make_function,而不是运行此函数。这是因为当yield关键字在函数中,它成为生成器。

In [7]: next(factory)
Out[7]: 'Cake 0'

In [8]: next(factory)
Out[8]: 'Cake 1'

In [9]: next(factory)
Out[9]: 'Cake 2'

In [10]: next(factory)
Out[10]: 'Cake 3'

In [11]: next(factory)
Out[11]: 'Cake 4'

他们消耗了所有的蛋糕, 但他们又要求一个。

In [12]: next(factory)
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-12-0f5c45da9774> in <module>
----> 1 next(factory)

StopIteration:

有人命令他们不要多问一些问题。一旦你消耗了一台发电机,你就用完它了。你应当打电话,make_cake如果你想要更多蛋糕,就再来一次。这就像给蛋糕再订一份蛋糕一样。

In [13]: factory = make_cake(3)

In [14]: for cake in factory:
    ...:     print(cake)
    ...:
Cake 0
Cake 1
Cake 2

您也可以使用上面的生成器来循环。

举个例子:假设你每次问密码时都想要随机密码。

In [22]: import random

In [23]: import string

In [24]: def random_password_generator():
    ...:     while True:
    ...:         yield ''.join([random.choice(string.ascii_letters) for _ in range(8)])
    ...:

In [25]: rpg = random_password_generator()

In [26]: for i in range(3):
    ...:     print(next(rpg))
    ...:
FXpUBhhH
DdUDHoHn
dvtebEqG

In [27]: next(rpg)
Out[27]: 'mJbYRMNo'

rpg是一个生成器, 它可以生成无限数量的随机密码。 所以我们也可以说, 当我们不知道序列的长度时, 生成器是有用的, 而不是列表中含有数量有限的元素 。