何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

python 的输出与返回语句类似,但有些差异除外。如果要从函数返回多个值,返回语句将把所有值都作为列表返回,并将其存储在调用符块的内存中。但如果我们不想使用额外的内存,会怎样?相反,我们需要在需要时从函数中获取该值。这是产出的来源。考虑以下函数:

def fun():
   yield 1
   yield 2
   yield 3

打电话的人是:

def caller():
   print ('First value printing')
   print (fun())
   print ('Second value printing')
   print (fun())
   print ('Third value printing')
   print (fun())

上述代码段(调用函数),如果调用,产出:-

First value printing
1
Second value printing
2
Third value printing
3

从上文可以看出, 产出返回其调用器的值, 但当函数再次调用时, 它不会从第一个语句开始, 而是从产出后右侧的语句开始。 在上述示例中, “ 第一值打印” 打印, 函数被调用。 1 被回传并打印。 然后, 打印“ 第二值打印” , 并再次调用有趣 () 。 它不打印 1 (第一个语句) , 而是返回 2 , 也就是说, 仅从产出 1 之后的语句 。 同样的程序会进一步重复 。

其他回答

yield就像有人要你做5个蛋糕。如果你做了至少一个蛋糕, 你可以在做其他蛋糕的时候给他们吃。

In [4]: def make_cake(numbers):
   ...:     for i in range(numbers):
   ...:         yield 'Cake {}'.format(i)
   ...:

In [5]: factory = make_cake(5)

factory称为“发电机”的发电机,它使你们做蛋糕。如果你们打电话,make_function,而不是运行此函数。这是因为当yield关键字在函数中,它成为生成器。

In [7]: next(factory)
Out[7]: 'Cake 0'

In [8]: next(factory)
Out[8]: 'Cake 1'

In [9]: next(factory)
Out[9]: 'Cake 2'

In [10]: next(factory)
Out[10]: 'Cake 3'

In [11]: next(factory)
Out[11]: 'Cake 4'

他们消耗了所有的蛋糕, 但他们又要求一个。

In [12]: next(factory)
---------------------------------------------------------------------------
StopIteration                             Traceback (most recent call last)
<ipython-input-12-0f5c45da9774> in <module>
----> 1 next(factory)

StopIteration:

有人命令他们不要多问一些问题。一旦你消耗了一台发电机,你就用完它了。你应当打电话,make_cake如果你想要更多蛋糕,就再来一次。这就像给蛋糕再订一份蛋糕一样。

In [13]: factory = make_cake(3)

In [14]: for cake in factory:
    ...:     print(cake)
    ...:
Cake 0
Cake 1
Cake 2

您也可以使用上面的生成器来循环。

举个例子:假设你每次问密码时都想要随机密码。

In [22]: import random

In [23]: import string

In [24]: def random_password_generator():
    ...:     while True:
    ...:         yield ''.join([random.choice(string.ascii_letters) for _ in range(8)])
    ...:

In [25]: rpg = random_password_generator()

In [26]: for i in range(3):
    ...:     print(next(rpg))
    ...:
FXpUBhhH
DdUDHoHn
dvtebEqG

In [27]: next(rpg)
Out[27]: 'mJbYRMNo'

rpg是一个生成器, 它可以生成无限数量的随机密码。 所以我们也可以说, 当我们不知道序列的长度时, 生成器是有用的, 而不是列表中含有数量有限的元素 。

下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。

我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:

  • 我打电话给你,告诉你,我想要一个数字序列 以特定的方式计算, 我让你知道算法是什么。
    此步骤对应于def内插入发电机函数,即包含yield.
  • 稍后,我告诉你, "好了,准备好告诉我数字的顺序"。
    此步骤对应于调用发电机函数, 以返回发电机对象 。注意不要告诉我任何数字 你只要拿起你的纸和铅笔
  • 我问你,"告诉我下一个号码",然后你告诉我第一个号码, 在那之后,你等我问你下一个号码。你的工作是记住你在哪里,你已经说过什么号码,下一个号码是什么。 我不在乎细节。
    此步骤对应于调用next(generator)在发电机的物体上。
    (在Python 2,.next是产生器物体的一种方法;在Python 3中,它被命名为.__next__,但正确的称呼方式是使用内置next()函数类似len().__len__)
  • ...重复前一步,直到...
  • 最终,你可能会走到尽头。你不会告诉我一个数字;你只会喊叫,“抓住你的马!我受够了!不再有数字了!”
    此步骤对应于生成器对象结束工作, 并提升StopIteration例外。
    生成器函数不需要提出例外。 当函数结束或发布时自动生成 。return.

这就是发电机(包含yield;它开始执行第一个next()时暂停yield,当要求next()它从最后一点继续值 。 它的设计完全符合 Python 的迭代协议, 它描述了如何按顺序请求值 。

循环程序最著名的用户是for在 Python 中命令。 所以, 当您做 :

for item in sequence:

这不重要,如果sequence是列表、字符串、字典或生成器对象对象如上文所述;结果相同:您逐个阅读顺序中的项目。

请注意def函数内含有yield关键字不是创建生成器的唯一方法; 它只是创建生成器的最简单的方法 。

将 " 更准确的信息 " 改为 " 更准确的信息 "迭代器类型、、 和收益单报表发电机发电机在 Python 文档中。

要理解发电机的产量功能,人们必须理解发电机是什么。 此外,在理解发电机之前,你必须理解易可动的。可操作性:对于创建列表,您自然需要能够逐项阅读每个元素。逐项阅读其项目的过程称为迭代:

>>> mylist = [1, 2, 3]
>>> for i in mylist:
...    print(i)
1
2
3 

My list 是可替换的。 当您使用列表理解值时, 您会创建一个列表, 因此该列表是可替换的 :

>>> mylist = [x*x for x in range(3)]
>>> for i in mylist:
...    print(i)
0
1
4 

所有可用于... 的数据结构都是可循环的; 列表、 字符串、 文件...

这些惯用方法很方便,因为您可以随意阅读,但您可以将所有值存储在记忆中,当您有许多值时,这些值并不总是可取的。 生成器: 生成器 A 也是一种迭代器, 一种特殊的迭代器, 只能迭代一次。 生成器不会将所有值存储在记忆中, 而是在苍蝇上生成值 :

发电机:发电机、发电机、发电机发电,但不储存能源;)

>>> mygenerator = (x*x for x in range(3))
>>> for i in mygenerator:
...    print(i)
0
1
4 

只要使用 () 而不是 [] , 列表理解就会变成发电机理解。 但是, 由于发电机只能使用一次, 您无法在我的生成器中执行 i 第二次 : 生成器计算 0, 然后丢弃它, 然后计算 1, 最后一次计算 4 。 典型的黑色盲人打破玉米 。

产出关键字的使用方式与返回相同,但函数返回生成器。

>>> def createGenerator():
...    mylist = range(3)
...    for i in mylist:
...        yield i*i
...
>>> mygenerator = createGenerator() 
>>> print(mygenerator) 
<generator object createGenerator at 0xb7555c34>
>>> for i in mygenerator:
...     print(i)
0
1
4 

这个例子本身是毫无用处的,但是当您需要函数返回大量数值,而只需要读一次,使用产量就方便了。

要掌握收益率,需要清楚的是,当函数被调用时,函数正文中写入的代码将不会运行。函数只返回生成对象。启动者可能会对此感到困惑。

第二,明白代码会从每次使用发电机时留下的代码中继续使用。

现在最困难的部分是:

第一次调用您函数所创建的生成器对象时, 它会运行函数中的代码, 从开始一直运行到产生, 然后返回循环的第一个值。 然后, 以后的每次调用都会运行您在函数中写入的循环的下一个迭代, 并返回下一个值。 这将一直持续到生成器被视为空, 当函数运行时没有被击中时该生成。 这可能是因为循环已经结束, 或者因为您不再满足于“ if/ else ” 。

个人理解 我希望帮助你!

在描述如何使用发电机的许多伟大答案中, 我感到还没有给出一种答案。 这是编程语言理论的答案:

缩略yieldPython 语句中的 Python 语句返回一个发电机。 Python 中的发电机是一个函数返回续续(具体地说,是一种共同的例行公事,但延续是了解情况的一般机制)。

编程语言理论的继续是更根本的计算方法,但通常不会被使用,因为它们极难解释,也很难执行。但是,关于继续的理念很简单:是计算状态尚未完成。在这种状态下,变量的当前值、尚未执行的操作等等被保存。然后,在程序稍后的某个时候,可以援引继续,使程序的变量被重新设置到状态,保存的操作被执行。

以这种更一般性的形式出现的延续可以采取两种方式实施。call/cc方式,程序堆放的堆放实际上被保存, 当继续被引用时, 堆放的堆放就会被恢复 。

在继续传承风格(CPS)中,续编只是程序员明确管理和传到子例程的正常功能(仅在功能为头等语言的语文中),程序员明确管理和传到子例程。在这种风格中,程序状态代表关闭(和恰好在其中编码的变量),而不是堆叠中某处的变量。 管理控制流程的功能接受继续作为参数(在CPS的某些变异中,功能可能接受多重延续),并通过仅拨打这些函数来操纵控制流程,然后返回。一个非常简单的延续传承风格实例如下:

def save_file(filename):
  def write_file_continuation():
    write_stuff_to_file(filename)

  check_if_file_exists_and_user_wants_to_overwrite(write_file_continuation)

在此(非常简单化的)示例中,程序员将实际写入文件的操作保存为续存(这有可能是一个非常复杂的操作,有许多细节要写出来),然后将这一续存(即作为头等关闭)传递给另一个操作员,该操作员会做一些更多的处理,然后在必要时调用它。 (在实际的 GUI 编程中,我大量使用这种设计模式,要么是因为它可以节省我的代码线,要么更重要的是,在图形用户界面事件触发后管理控制流程。 )

这个职位的其余部分将不失为一般性,将连续性概念化为CPS, 因为它很容易理解和阅读。


现在让我们来谈谈Python的发电机。发电机是一个特定的子类型 继续。而一般而言,继续保留能够拯救a计算计算(即程序调用堆叠)发电机只能保存电离层的迭代状态。振动器虽然这一定义对发电机的某些使用情况略有误导性,例如:

def f():
  while True:
    yield 4

这显然是一个合理的可循环性, 其行为是明确定义的, 每当发电机转动时, 它就会返回 4 个( 并且永远这样做 ) 。 但是,在思考迭代器时, 可能不会想到这种典型的可循环性( 即, , ) 。for x in collection: do_something(x)这个例子说明了发电机的功率:如果有什么是迭代器,发电机可以挽救其迭代状态。

需要重申: 继续可以保存程序堆叠的状态, 发电机可以保存循环状态。 这意味着, 继续的威力比发电机大得多, 并且发电机也容易得多, 也容易得多。 语言设计师更容易执行, 程序设计员更容易使用( 如果您有时间燃烧, 试着阅读和理解)此页面的续续和调用/ cc).

但您可以很容易地实施(和概念化)发电机,作为延续传承风格的一个简单而具体的例子:

时 时 时yield被调用,它告诉函数返回一个延续。当再次调用函数时,它从它离开的开始。因此,在假假假代码(即不是伪代码,但不包括代码)中,生成器的next方法基本上如下:

class Generator():
  def __init__(self,iterable,generatorfun):
    self.next_continuation = lambda:generatorfun(iterable)

  def next(self):
    value, next_continuation = self.next_continuation()
    self.next_continuation = next_continuation
    return value

位于yield关键字实际上是实际生成功能的合成糖, 基本上类似 :

def generatorfun(iterable):
  if len(iterable) == 0:
    raise StopIteration
  else:
    return (iterable[0], lambda:generatorfun(iterable[1:]))

记住这只是假代号,而Python发电机的实际安装则更为复杂。 但是,作为了解正在发生的情况的一种练习,试图在不使用发电机物体的情况下,使用持续的传承风格来实施发电机物体。yield关键字。

发电机可以使个别经过处理的物品立即得到处理(不必等待整个收集过程的处理),下面的例子说明了这一点。

import time

def get_gen():
    for i in range(10):
        yield i
        time.sleep(1)

def get_list():
    ret = []
    for i in range(10):
        ret.append(i)
        time.sleep(1)
    return ret


start_time = time.time()
print('get_gen iteration (individual results come immediately)')
for i in get_gen():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')
print()

start_time = time.time()
print('get_list iteration (results come all at once)') 
for i in get_list():
    print(f'result arrived after: {time.time() - start_time:.0f} seconds')

get_gen iteration (individual results come immediately)
result arrived after: 0 seconds
result arrived after: 1 seconds
result arrived after: 2 seconds
result arrived after: 3 seconds
result arrived after: 4 seconds
result arrived after: 5 seconds
result arrived after: 6 seconds
result arrived after: 7 seconds
result arrived after: 8 seconds
result arrived after: 9 seconds

get_list iteration (results come all at once)
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds
result arrived after: 10 seconds