何为使用yield
Python 中的关键字?
比如说,我在试着理解这个代码1:
def _get_child_candidates(self, distance, min_dist, max_dist):
if self._leftchild and distance - max_dist < self._median:
yield self._leftchild
if self._rightchild and distance + max_dist >= self._median:
yield self._rightchild
这就是打电话的人:
result, candidates = [], [self]
while candidates:
node = candidates.pop()
distance = node._get_dist(obj)
if distance <= max_dist and distance >= min_dist:
result.extend(node._values)
candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result
当方法_get_child_candidates
是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?
1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.
(我下面的回答只从使用Python发电机的角度,而不是从使用Python发电机的角度,而不是从使用Python发电机的角度来回答发电机机制基本实施,这涉及一些玩弄堆叠和堆积操纵的把戏。 ))
何时yield
使用代替return
在 python 函数中,该函数被转换为特殊的东西,称为generator function
该函数返回generator
类型。缩略yield
关键字是通知 Python 编译者专门处理此函数的标志。正常函数一旦从中返回某些值, 正常函数就会终止。 但是, 在编译器的帮助下, 生成器函数将会终止 。能够被想象到即,执行环境将恢复,执行将持续到最后一年。直到你明确要求返回,这会引起StopIteration
选项(这也是迭代协议的一部分),或达到函数的结尾。我发现很多关于generator
但这个1个调自自functional programming perspective
是最可消化的。
(现在我想谈一下为什么generator
和iterator
我希望这能帮助你掌握基本动机和基本动机这一概念以其他语言出现,如C#。 )
据我所知,当我们想要处理一堆数据时, 我们通常先把数据存放在某处,然后一个一个地处理。但是这个是。幼天如果数据量很大, 事先将数据全部储存起来是昂贵的 。而不是储存data
为什么不直接储存某种metadata
间接,即:the logic how the data is computed
.
有两种方法可以包扎这类元数据。
- OO 方法,我们包封元数据
as a class
这就是所谓的iterator
执行滚动协议(即__next__()
, 和__iter__()
这也是人们所普遍看到的方法。电动电机设计图案.
- 功能方法,我们包封元数据
as a function
这就是所谓的generator function
但是在兜帽帽下, 返回的人generator object
仍为IS-A
因为它还执行传动协议 。
无论哪种方式, 都会创建一个迭代器, 即某个可以提供您想要的数据的对象。 OO 处理方式可能有点复杂。 总之, 由您决定使用哪一种 。
下面是浅白语言的例子。我将提供高层次人类概念与低层次Python概念之间的对应关系。
我想用数字序列操作, 但我不想用这个序列的创建来烦恼我自己, 我只想专注于我想做的操作。 因此, 我做以下工作:
- 我打电话给你,告诉你,我想要一个数字序列 以特定的方式计算, 我让你知道算法是什么。
此步骤对应于def
内插入发电机函数,即包含yield
.
- 稍后,我告诉你, "好了,准备好告诉我数字的顺序"。
此步骤对应于调用发电机函数, 以返回发电机对象 。注意不要告诉我任何数字 你只要拿起你的纸和铅笔
- 我问你,"告诉我下一个号码",然后你告诉我第一个号码, 在那之后,你等我问你下一个号码。你的工作是记住你在哪里,你已经说过什么号码,下一个号码是什么。 我不在乎细节。
此步骤对应于调用next(generator)
在发电机的物体上。
(在Python 2,.next
是产生器物体的一种方法;在Python 3中,它被命名为.__next__
,但正确的称呼方式是使用内置next()
函数类似len()
和.__len__
)
- ...重复前一步,直到...
- 最终,你可能会走到尽头。你不会告诉我一个数字;你只会喊叫,“抓住你的马!我受够了!不再有数字了!”
此步骤对应于生成器对象结束工作, 并提升StopIteration
例外。
生成器函数不需要提出例外。 当函数结束或发布时自动生成 。return
.
这就是发电机(包含yield
;它开始执行第一个next()
时暂停yield
,当要求next()
它从最后一点继续值 。 它的设计完全符合 Python 的迭代协议, 它描述了如何按顺序请求值 。
循环程序最著名的用户是for
在 Python 中命令。 所以, 当您做 :
for item in sequence:
这不重要,如果sequence
是列表、字符串、字典或生成器对象对象如上文所述;结果相同:您逐个阅读顺序中的项目。
请注意def
函数内含有yield
关键字不是创建生成器的唯一方法; 它只是创建生成器的最简单的方法 。
将 " 更准确的信息 " 改为 " 更准确的信息 "迭代器类型、、 和收益单报表和发电机发电机在 Python 文档中。
python 的输出与返回语句类似,但有些差异除外。如果要从函数返回多个值,返回语句将把所有值都作为列表返回,并将其存储在调用符块的内存中。但如果我们不想使用额外的内存,会怎样?相反,我们需要在需要时从函数中获取该值。这是产出的来源。考虑以下函数:
def fun():
yield 1
yield 2
yield 3
打电话的人是:
def caller():
print ('First value printing')
print (fun())
print ('Second value printing')
print (fun())
print ('Third value printing')
print (fun())
上述代码段(调用函数),如果调用,产出:-
First value printing
1
Second value printing
2
Third value printing
3
从上文可以看出, 产出返回其调用器的值, 但当函数再次调用时, 它不会从第一个语句开始, 而是从产出后右侧的语句开始。 在上述示例中, “ 第一值打印” 打印, 函数被调用。 1 被回传并打印。 然后, 打印“ 第二值打印” , 并再次调用有趣 () 。 它不打印 1 (第一个语句) , 而是返回 2 , 也就是说, 仅从产出 1 之后的语句 。 同样的程序会进一步重复 。
yield
简直就像return
区别在于,下次你打电话给发电机时,从最后一次呼叫开始执行。yield
与返回不同的语句,当生成时, 堆叠框架不会被清理, 但是控件会被转回调用方, 所以下次调用函数时, 它的状态将会恢复 。
对于您的代码,函数get_child_candidates
动作就像一个循环器,这样当您扩展列表时,它会一次向新列表添加一个元素。
list.extend
在你公布的代码样本中, 只需将图普还给列表, 并附加到列表中, 就会更加清晰 。
也可以将数据发送回生成器!
事实上,正如这里许多答案所解释的,使用yield
创建 a 创建generator
.
您可以使用yield
关键字到将数据发送回“ 实时” 生成器.
示例:
假设我们有一种方法可以从英语翻译成其他语言。 在开始的时候, 它会做一些很重的事情, 应该做一次。 我们希望这个方法可以永远运行( 不知道为什么..... . :) , 并且收到要翻译的单词 。
def translator():
# load all the words in English language and the translation to 'other lang'
my_words_dict = {'hello': 'hello in other language', 'dog': 'dog in other language'}
while True:
word = (yield)
yield my_words_dict.get(word, 'Unknown word...')
运行中 :
my_words_translator = translator()
next(my_words_translator)
print(my_words_translator.send('dog'))
next(my_words_translator)
print(my_words_translator.send('cat'))
将打印 :
dog in other language
Unknown word...
概括如下:
使用send
生成器内的方法将数据发送回生成器。如果允许, a(yield)
使用。