何为使用yieldPython 中的关键字?

比如说,我在试着理解这个代码1:

def _get_child_candidates(self, distance, min_dist, max_dist):
    if self._leftchild and distance - max_dist < self._median:
        yield self._leftchild
    if self._rightchild and distance + max_dist >= self._median:
        yield self._rightchild  

这就是打电话的人:

result, candidates = [], [self]
while candidates:
    node = candidates.pop()
    distance = node._get_dist(obj)
    if distance <= max_dist and distance >= min_dist:
        result.extend(node._values)
    candidates.extend(node._get_child_candidates(distance, min_dist, max_dist))
return result

当方法_get_child_candidates是否调用 ? 列表是否返回 ? 单元素 ? 是否又调用 ? 以后的呼叫何时停止 ?


1. 本代码由Jochen Schulz(jrschulz)编写,他为公制空间制作了一个伟大的Python图书馆。模块 m 空间.

当前回答

许多人使用return而不是yield,但在某些情况下yield能够更有效和更方便地开展工作。

以下是一个例子:yield绝对是最好的:

返回返回(在职能)

import random

def return_dates():
    dates = [] # With 'return' you need to create a list then return it
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        dates.append(date)
    return dates

收益率(在职能)

def yield_dates():
    for i in range(5):
        date = random.choice(["1st", "2nd", "3rd", "4th", "5th", "6th", "7th", "8th", "9th", "10th"])
        yield date # 'yield' makes a generator automatically which works
                   # in a similar way. This is much more efficient.

呼叫功能

dates_list = return_dates()
print(dates_list)
for i in dates_list:
    print(i)

dates_generator = yield_dates()
print(dates_generator)
for i in dates_generator:
    print(i)

两种功能都做相同的事情,但yield使用三行而不是五行, 并有一个更少的变量需要担心 。

这是代码的结果:

Output

正如你可以看到两个函数都做相同的事情。唯一的区别是return_dates()给出列表并yield_dates()给发电机。

真实生活中的范例就是 逐行读取文件行 或者你只是想制造一个发电机

其他回答

收益率与返回相似。区别是:

收益率使函数可适用(在下个示例中)primes(n = 1)函数成为可使用性) 。
它的基本意思是 函数下次被调用时, 它将继续从它离开的地方( 位于yield expression).

def isprime(n):
    if n == 1:
        return False
    for x in range(2, n):
        if n % x == 0:
            return False
    else:
        return True

def primes(n = 1):
   while(True):
       if isprime(n): yield n
       n += 1 

for n in primes():
    if n > 100: break
    print(n)

在上述例子中,如果isprime(n)这是真的, 它会返回质号。 在下次迭代中, 它会从下一行继续

n += 1  

还有一件事情要提: 产量的函数其实不一定要终止。我写了这样的代码:

def fib():
    last, cur = 0, 1
    while True: 
        yield cur
        last, cur = cur, last + cur

这样我就可以用在别的代码里了

for f in fib():
    if some_condition: break
    coolfuncs(f);

它确实有助于简化一些问题,使一些事情更容易处理。

我不太熟悉Python, 但我相信它和Python一样C# 的迭代器区块如果你熟悉这些。

关键的想法是,编译者/解释者/ 不论做什么诡计, 就打电话者而言, 他们可以继续拨打下一个 () , 它会继续返回数值 :仿佛发电机方法被暂停。现在显然你无法真正“暂停”一种方法,因此编译器可以建立一个状态机器,以便你记住你目前的位置和本地变量等的外观。这比自己写一个转动器容易得多。

- 功能 - 返回。

发电机 -- -- 产量(含有一个或多个产量和零或更多回报率)。

names = ['Sam', 'Sarah', 'Thomas', 'James']


# Using function
def greet(name) :
    return f'Hi, my name is {name}.'
    
for each_name in names:
    print(greet(each_name))

# Output:   
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.


# using generator
def greetings(names) :
    for each_name in names:
        yield f'Hi, my name is {each_name}.'
 
for greet_name in greetings(names):
    print (greet_name)

# Output:    
>>>Hi, my name is Sam.
>>>Hi, my name is Sarah.
>>>Hi, my name is Thomas.
>>>Hi, my name is James.

发电机看起来像一个函数,但行为举止却像一个迭代器。

发件人继续从它所在的位置执行 。 恢复后, 函数在最后产值运行后立即继续执行 。 这允许它的代码在一段时间内生成一系列的值, 代之以它们一次性计算全部值, 然后把它们像列表一样送回去 。

def function():
    yield 1 # return this first
    yield 2 # start continue from here (yield don't execute above code once executed)
    yield 3 # give this at last (yield don't execute above code once executed)

for processed_data in function(): 
    print(processed_data)
    
#Output:

>>>1
>>>2
>>>3

注:放弃不应在尝试中.最终建造。

要理解的快捷键yield

当您看到一个函数yield语句,应用这个简单易懂的把戏来理解会发生什么:

  1. 插入一行result = []3⁄4 ̄ ̧漯B
  2. 替换各yield exprresult.append(expr).
  3. 插入一行return result函数的底部。
  4. - 耶 - 不再yield语句! 读取并找出代码 。
  5. 将函数与原始定义比较。

这个把戏也许能让你了解 函数背后的逻辑, 但实际发生什么了?yield与以列表为基础的方法发生的情况大不相同。 在许多情况下, 收益率方法会提高记忆效率和速度。 在其他情况下, 这个把戏会使你陷入无穷无尽的循环中, 即使最初的函数效果很好。 阅读更多来学习...

不要弄乱你的循环器 循环器和发电机

首先,动态自动交换协议- 当你写作时

for x in mylist:
    ...loop body...

Python 执行以下两个步骤:

  1. 获得一个循环器用于mylist:

    调调iter(mylist)->此返回一个带有next()方法(或)__next__()Python 3 中。

    [这是大多数人忘记告诉你的一步]

  2. 使用迭代器绕过项目 :

    继续叫next()从第1步返回的迭代器上的迭代器 方法上的迭代器 。next()指定用于x并执行环环体。如果有例外StopIteration从内部筹集next(),这意味着循环器中没有更多的值,循环就退出了。

真相是 Python 随时随地执行上述两步环绕环绕对象的内容 - 所以它可能是循环的, 但它也可以是代码otherlist.extend(mylist)(此处(此处)otherlist是 Python 列表)。

mylist易 易 易 性因为它执行了循环协议。在用户定义的类中,您可以执行__iter__()使类的示例可易易易操作的方法。 此方法应该返回振动器对象。next()两种方法都可实施。__iter__()next()在同一类同级同级同级同级同级同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同班同同同班同班同班同班同班同同班同班同班同班同班同班同同同班同班同班同班同班同同班同同同同同班同班同班同班同同班同班同班同班同同同同同同同班同班同班同同同同同同同班同同同同同同班同__iter__()返回返回self。这将对简单案例有效,但当您想要两个迭代器同时绕过同一个对象时,则不会有效。

这就是传动程序,许多物体执行这个程序:

  1. 内置列表、词典、图普尔、设置和文件。
  2. 执行的用户定义的分类__iter__().
  3. 发电机。

注 afor循环不知道它处理的是什么样的物体 - 它只是遵循循环程序, 并且很乐意按项目逐项获得它调用的项目next(). 内置清单逐项归还其物项,词典则逐项归还键键一个一个一个一个,文件返回线条一个一个一个一个一个,等等。 和发电机返回。 。 。yield输入 :

def f123():
    yield 1
    yield 2
    yield 3

for item in f123():
    print item

取代yield如果您有三种语句return以 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国 国f123()只有第一个被执行, 而功能会退出。 但是,f123()没有普通函数为普通函数的普通函数为普通函数。f123()被召唤的,被召唤的,被召唤的,被召唤的,返回输出语句中的任何值。它返回生成对象。它返回一个生成对象。此外,函数并不真正退出 -它进入中止状态。当for循环试图环绕到发电机对象上, 函数从中止状态恢复 。yield执行下一行代码,在此情况下,ayield语句,然后返回该语句,作为下一个项目返回该语句。这种情况发生到函数退出时,然后生成器产生StopIteration,并循环出口。

因此,发电机对象有点像一个适配器—— 一方面,它展示了迭代程序,通过曝光__iter__()next()保存for循环快乐。 但是,在另一端, 它运行的函数足够从中获取下一个值, 并将其重新置于暂停模式 。

为什么使用发电机?

通常情况下, 您可以写入不使用发电机的代码, 但使用相同的逻辑逻辑。 一个选项是使用我之前提到的临时列表“ trick ” 。 这不会在所有情况下都有效, 例如, 如果您有无限循环, 或者当您有很长的列表时它可能无效地使用内存 。 另一种方法是执行一个新的可循环的类“ 某些东西 ” , 将国家保留在成员中, 并在成员中执行下一个逻辑步骤 。next()(或)__next__()Python 3 方法中的代码 。 取决于逻辑, 内部的代码 。next()方法最终可能会看起来非常复杂,容易出现虫子。 这里的发电机提供了清洁和容易的解决方案。