假设我有这个:
[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}
如何做到这一点?
假设我有这个:
[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}
如何做到这一点?
当前回答
这是在字典列表中搜索值的一般方法:
def search_dictionaries(key, value, list_of_dictionaries):
return [element for element in list_of_dictionaries if element[key] == value]
其他回答
鸭子将比列表理解或过滤器快得多。它在你的对象上建立一个索引,这样查找就不需要扫描每一个项目。
PIP安装鸭
from ducks import Dex
dicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
# Build the index
dex = Dex(dicts, {'name': str, 'age': int})
# Find matching objects
dex[{'name': 'Pam', 'age': 7}]
结果:[{'name': 'Pam', 'age': 7}]
dicts=[
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
from collections import defaultdict
dicts_by_name=defaultdict(list)
for d in dicts:
dicts_by_name[d['name']]=d
print dicts_by_name['Tom']
#output
#>>>
#{'age': 10, 'name': 'Tom'}
这是在字典列表中搜索值的一般方法:
def search_dictionaries(key, value, list_of_dictionaries):
return [element for element in list_of_dictionaries if element[key] == value]
将接受的答案放在函数中,以便于重用
def get_item(collection, key, target):
return next((item for item in collection if item[key] == target), None)
也可以写成
get_item_lambda = lambda collection, key, target : next((item for item in collection if item[key] == target), None)
结果
key = "name"
target = "Pam"
print(get_item(target_list, key, target))
print(get_item_lambda(target_list, key, target))
#{'name': 'Pam', 'age': 7}
#{'name': 'Pam', 'age': 7}
如果键可能不在目标字典中,请使用dict。get和避免KeyError
def get_item(collection, key, target):
return next((item for item in collection if item.get(key, None) == target), None)
get_item_lambda = lambda collection, key, target : next((item for item in collection if item.get(key, None) == target), None)
你试过熊猫套餐吗?它非常适合这类搜索任务,也进行了优化。
import pandas as pd
listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]
# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)
# The pandas dataframe allows you to pick out specific values like so:
df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]
# Alternate syntax, same thing
df2 = df[ (df.name == 'Pam') & (df.age == 7) ]
我在下面添加了一些基准测试,以说明熊猫在更大范围内(即10万+条目)的更快运行时间:
setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'
method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'
import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))
t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))
#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714