假设我有这个:

[
  {"name": "Tom", "age": 10},
  {"name": "Mark", "age": 5},
  {"name": "Pam", "age": 7}
]

通过搜索“Pam”作为名称,我想检索相关的字典:{name:“Pam”,年龄:7}

如何做到这一点?


当前回答

你可以试试这个:

''' lst: list of dictionaries '''
lst = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]

search = raw_input("What name: ") #Input name that needs to be searched (say 'Pam')

print [ lst[i] for i in range(len(lst)) if(lst[i]["name"]==search) ][0] #Output
>>> {'age': 7, 'name': 'Pam'} 

其他回答

我会像这样创建一个字典的字典:

names = ["Tom", "Mark", "Pam"]
ages = [10, 5, 7]
my_d = {}

for i, j in zip(names, ages):
    my_d[i] = {"name": i, "age": j}

或者,使用与问题中完全相同的信息:

info_list = [{"name": "Tom", "age": 10}, {"name": "Mark", "age": 5}, {"name": "Pam", "age": 7}]
my_d = {}

for d in info_list:
    my_d[d["name"]] = d

然后你可以执行my_d["Pam"],得到{"name": "Pam", "age": 7}

names = [{'name':'Tom', 'age': 10}, {'name': 'Mark', 'age': 5}, {'name': 'Pam', 'age': 7}]
resultlist = [d    for d in names     if d.get('name', '') == 'Pam']
first_result = resultlist[0]

这是一种方法……

将接受的答案放在函数中,以便于重用

def get_item(collection, key, target):
    return next((item for item in collection if item[key] == target), None)

也可以写成

   get_item_lambda = lambda collection, key, target : next((item for item in collection if item[key] == target), None)

结果

    key = "name"
    target = "Pam"
    print(get_item(target_list, key, target))
    print(get_item_lambda(target_list, key, target))

    #{'name': 'Pam', 'age': 7}
    #{'name': 'Pam', 'age': 7}

如果键可能不在目标字典中,请使用dict。get和避免KeyError

def get_item(collection, key, target):
    return next((item for item in collection if item.get(key, None) == target), None)

get_item_lambda = lambda collection, key, target : next((item for item in collection if item.get(key, None) == target), None)

你试过熊猫套餐吗?它非常适合这类搜索任务,也进行了优化。

import pandas as pd

listOfDicts = [
{"name": "Tom", "age": 10},
{"name": "Mark", "age": 5},
{"name": "Pam", "age": 7}
]

# Create a data frame, keys are used as column headers.
# Dict items with the same key are entered into the same respective column.
df = pd.DataFrame(listOfDicts)

# The pandas dataframe allows you to pick out specific values like so:

df2 = df[ (df['name'] == 'Pam') & (df['age'] == 7) ]

# Alternate syntax, same thing

df2 = df[ (df.name == 'Pam') & (df.age == 7) ]

我在下面添加了一些基准测试,以说明熊猫在更大范围内(即10万+条目)的更快运行时间:

setup_large = 'dicts = [];\
[dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 })) for _ in range(25000)];\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

setup_small = 'dicts = [];\
dicts.extend(({ "name": "Tom", "age": 10 },{ "name": "Mark", "age": 5 },\
{ "name": "Pam", "age": 7 },{ "name": "Dick", "age": 12 }));\
from operator import itemgetter;import pandas as pd;\
df = pd.DataFrame(dicts);'

method1 = '[item for item in dicts if item["name"] == "Pam"]'
method2 = 'df[df["name"] == "Pam"]'

import timeit
t = timeit.Timer(method1, setup_small)
print('Small Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_small)
print('Small Method Pandas: ' + str(t.timeit(100)))

t = timeit.Timer(method1, setup_large)
print('Large Method LC: ' + str(t.timeit(100)))
t = timeit.Timer(method2, setup_large)
print('Large Method Pandas: ' + str(t.timeit(100)))

#Small Method LC: 0.000191926956177
#Small Method Pandas: 0.044392824173
#Large Method LC: 1.98827004433
#Large Method Pandas: 0.324505090714
def dsearch(lod, **kw):
    return filter(lambda i: all((i[k] == v for (k, v) in kw.items())), lod)

lod=[{'a':33, 'b':'test2', 'c':'a.ing333'},
     {'a':22, 'b':'ihaha', 'c':'fbgval'},
     {'a':33, 'b':'TEst1', 'c':'s.ing123'},
     {'a':22, 'b':'ihaha', 'c':'dfdvbfjkv'}]



list(dsearch(lod, a=22))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
 {'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]



list(dsearch(lod, a=22, b='ihaha'))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'},
 {'a': 22, 'b': 'ihaha', 'c': 'dfdvbfjkv'}]


list(dsearch(lod, a=22, c='fbgval'))

[{'a': 22, 'b': 'ihaha', 'c': 'fbgval'}]