分治算法和动态规划算法的区别是什么?这两个术语有什么不同?我不明白它们之间的区别。

请举一个简单的例子来解释两者之间的区别,以及它们相似的理由。


当前回答

分而治之

分而治之的工作原理是将问题划分为子问题,递归地征服每个子问题,并将这些解决方案组合起来。

动态规划

动态规划是一种解决具有重叠子问题的问题的技术。每个子问题只解决一次,每个子问题的结果存储在一个表中(通常实现为数组或哈希表),以供将来引用。这些子解可以用来获得原始解,存储子问题解的技术称为记忆。

你可能会想到DP =递归+重用

理解差异的一个经典例子是,这两种方法都可以获得第n个斐波那契数。看看麻省理工学院的材料。


分而治之法

动态规划方法

其他回答

分而治之和动态规划的另一个区别是:

分而治之:

在子问题上做更多的工作,因此有更多的时间消耗。 分治法中子问题是相互独立的。

动态规划:

只解决一次子问题,然后将其存储在表中。 在动态规划中,子问题不是相互独立的。

分而治之 它们分解成互不重叠的子问题 示例:阶乘数,即fact(n) = n*fact(n-1)

fact(5) = 5* fact(4) = 5 * (4 * fact(3))= 5 * 4 * (3 *fact(2))= 5 * 4 * 3 * 2 * (fact(1))

正如我们上面看到的,没有事实(x)是重复的,所以阶乘没有重叠的问题。

动态规划 他们分成了重叠的子问题 示例:斐波那契数列,即fib(n) = fib(n-1) + fib(n-2)

fib(5) = fib(4) + fib(3) = (fib(3)+fib(2)) + (fib(2)+fib(1))

如上所述,fib(4)和fib(3)都使用fib(2)。同样的,很多fib(x)被重复。这就是为什么斐波那契有重叠的子问题。

由于DP中子问题的重复,我们可以将这些结果保存在一个表中,节省了计算量。这被称为记忆

分而治之

在此问题的解决分为以下三步: 1. 划分-划分若干个子问题 2. 征服——通过递归解决子问题来征服 3.组合-结合子问题的解决方案,以得到原问题的解决方案 递归方法 自顶向下技术 示例:归并排序

动态规划

在此问题的解决步骤如下: 1. 定义最优解的结构 2. 反复定义最优解的值。 3.用自底向上的方法求最优解的值 4. 从得到的值得到最终的最优解 非递归 自底向上技术 例子:Strassen矩阵乘法

我假设你已经阅读了维基百科和其他关于这方面的学术资源,所以我不会重复使用任何信息。我还必须提醒,我不是计算机科学专家,但我将分享我对这些主题的理解……

动态规划

把问题分解成离散的子问题。Fibonacci序列的递归算法是动态规划的一个例子,因为它通过首先求解fib(n-1)来求解fib(n)。为了解决原来的问题,它解决了一个不同的问题。

分而治之

These algorithms typically solve similar pieces of the problem, and then put them together at the end. Mergesort is a classic example of divide and conquer. The main difference between this example and the Fibonacci example is that in a mergesort, the division can (theoretically) be arbitrary, and no matter how you slice it up, you are still merging and sorting. The same amount of work has to be done to mergesort the array, no matter how you divide it up. Solving for fib(52) requires more steps than solving for fib(2).

分而治之

分而治之的工作原理是将问题划分为子问题,递归地征服每个子问题,并将这些解决方案组合起来。

动态规划

动态规划是一种解决具有重叠子问题的问题的技术。每个子问题只解决一次,每个子问题的结果存储在一个表中(通常实现为数组或哈希表),以供将来引用。这些子解可以用来获得原始解,存储子问题解的技术称为记忆。

你可能会想到DP =递归+重用

理解差异的一个经典例子是,这两种方法都可以获得第n个斐波那契数。看看麻省理工学院的材料。


分而治之法

动态规划方法