考虑以下几点:

@property
def name(self):

    if not hasattr(self, '_name'):

        # expensive calculation
        self._name = 1 + 1

    return self._name

我是新来的,但我认为缓存可以分解成一个装饰器。只是我没有找到一个这样的;)

PS,真正的计算不依赖于可变值


当前回答

在Python Wiki中还有另一个备忘录装饰器的例子:

http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize

这个例子有点聪明,因为如果参数是可变的,它不会缓存结果。(检查代码,它非常简单和有趣!)

其他回答

在Python Wiki中还有另一个备忘录装饰器的例子:

http://wiki.python.org/moin/PythonDecoratorLibrary#Memoize

这个例子有点聪明,因为如果参数是可变的,它不会缓存结果。(检查代码,它非常简单和有趣!)

Python 3.8 functools。cached_property装饰

https://docs.python.org/dev/library/functools.html#functools.cached_property

来自Werkzeug的cached_property在:https://stackoverflow.com/a/5295190/895245上提到过,但据说派生版本将合并到3.8中,这是非常棒的。

这个装饰器可以被看作是缓存@property,或者是清洁器@functools。Lru_cache,当你没有任何参数时。

医生说:

@functools.cached_property(func) Transform a method of a class into a property whose value is computed once and then cached as a normal attribute for the life of the instance. Similar to property(), with the addition of caching. Useful for expensive computed properties of instances that are otherwise effectively immutable. Example: class DataSet: def __init__(self, sequence_of_numbers): self._data = sequence_of_numbers @cached_property def stdev(self): return statistics.stdev(self._data) @cached_property def variance(self): return statistics.variance(self._data) New in version 3.8. Note This decorator requires that the dict attribute on each instance be a mutable mapping. This means it will not work with some types, such as metaclasses (since the dict attributes on type instances are read-only proxies for the class namespace), and those that specify slots without including dict as one of the defined slots (as such classes don’t provide a dict attribute at all).

Werkzeug有一个cached_property装饰器(docs, source)

@lru_cache不适合默认attrs

我的@mem装饰:

import inspect
from copy import deepcopy
from functools import lru_cache, wraps
from typing import Any, Callable, Dict, Iterable


# helper
def get_all_kwargs_values(f: Callable, kwargs: Dict[str, Any]) -> Iterable[Any]:
    default_kwargs = {
        k: v.default
        for k, v in inspect.signature(f).parameters.items()
        if v.default is not inspect.Parameter.empty
    }

    all_kwargs = deepcopy(default_kwargs)
    all_kwargs.update(kwargs)

    for key in sorted(all_kwargs.keys()):
        yield all_kwargs[key]


# the best decorator
def mem(func: Callable) -> Callable:
    cache = dict()

    @wraps(func)
    def wrapper(*args, **kwargs) -> Any:
        all_kwargs_values = get_all_kwargs_values(func, kwargs)
        params = (*args, *all_kwargs_values)
        _hash = hash(params)

        if _hash not in cache:
            cache[_hash] = func(*args, **kwargs)

        return cache[_hash]

    return wrapper


# some logic
def counter(*args) -> int:
    print(f'* not_cached:', end='\t')
    return sum(args)


@mem
def check_mem(a, *args, z=10) -> int:
    return counter(a, *args, z)


@lru_cache
def check_lru(a, *args, z=10) -> int:
    return counter(a, *args, z)


def test(func) -> None:
    print(f'\nTest {func.__name__}:')

    print('*', func(1, 2, 3, 4, 5))
    print('*', func(1, 2, 3, 4, 5))
    print('*', func(1, 2, 3, 4, 5, z=6))
    print('*', func(1, 2, 3, 4, 5, z=6))
    print('*', func(1))
    print('*', func(1, z=10))


def main():
    test(check_mem)
    test(check_lru)


if __name__ == '__main__':
    main()

输出:

Test check_mem:
* not_cached:   * 25
* 25
* not_cached:   * 21
* 21
* not_cached:   * 11
* 11

Test check_lru:
* not_cached:   * 25
* 25
* not_cached:   * 21
* 21
* not_cached:   * 11
* not_cached:   * 11

除了Memoize示例,我还找到了以下python包:

cachepy;它允许设置ttl和\或缓存函数的调用次数;此外,还可以使用加密的基于文件的缓存… percache