我一直在使用TensorFlow中矩阵乘法的介绍性示例。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

当我打印乘积时,它显示为一个张量对象:

<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>

但是我怎么知道产品的价值呢?

下面的方法不起作用:

print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)

我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?


当前回答

我不确定我是否遗漏了这里,但我认为最简单和最好的方法是使用tf.keras.backend。get_value API。

print(product)
>>tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(tf.keras.backend.get_value(product))
>>[[12.]]

其他回答

重申其他人所说的,不运行图表是不可能检查值的。

下面是一个简单的代码片段,供寻找打印值的简单示例的人使用。代码可以在ipython notebook中执行,无需任何修改

import tensorflow as tf

#define a variable to hold normal random values 
normal_rv = tf.Variable( tf.truncated_normal([2,3],stddev = 0.1))

#initialize the variable
init_op = tf.initialize_all_variables()

#run the graph
with tf.Session() as sess:
    sess.run(init_op) #execute init_op
    #print the random values that we sample
    print (sess.run(normal_rv))

输出:

[[-0.16702934  0.07173464 -0.04512421]
 [-0.02265321  0.06509651 -0.01419079]]

你应该认为TensorFlow核心程序由两个独立的部分组成:

构建计算图。 运行计算图。

因此,对于下面的代码,您只需构建计算图。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

为了初始化TensorFlow程序中的所有变量,你必须显式调用一个特殊操作,如下所示:

init = tf.global_variables_initializer()

现在您构建了图并初始化了所有变量,下一步是计算节点,您必须在会话中运行计算图。会话封装了TensorFlow运行时的控件和状态。

下面的代码创建一个Session对象,然后调用它的run方法来运行足够的计算图来计算product:

sess = tf.Session()
// run variables initializer
sess.run(init)

print(sess.run([product]))

Tf.keras.backend.eval用于计算小表达式。

tf.keras.backend.eval(op)

TF - 1。x和TF 2.0兼容。


最小可验证示例

from tensorflow.keras.backend import eval

m1 = tf.constant([[3., 3.]])
m2 = tf.constant([[2.],[2.]])

eval(tf.matmul(m1, m2))
# array([[12.]], dtype=float32)

这很有用,因为您不必显式地创建Session或InteractiveSession。

在Tensorflow 1.x中

import tensorflow as tf
tf.enable_eager_execution()
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

#print the product
print(product)         # tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(product.numpy()) # [[12.]]

用Tensorflow 2。X,默认开启急切模式。因此下面的代码与TF2.0一起工作。

import tensorflow as tf
matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

#print the product
print(product)         # tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(product.numpy()) # [[12.]]

问题:如何在TensorFlow中打印一个张量对象的值?

答:

import tensorflow as tf

# Variable
x = tf.Variable([[1,2,3]])

# initialize
init = (tf.global_variables_initializer(), tf.local_variables_initializer())

# Create a session
sess = tf.Session()

# run the session
sess.run(init)

# print the value
sess.run(x)