我一直在使用TensorFlow中矩阵乘法的介绍性示例。

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

当我打印乘积时,它显示为一个张量对象:

<tensorflow.python.framework.ops.Tensor object at 0x10470fcd0>

但是我怎么知道产品的价值呢?

下面的方法不起作用:

print product
Tensor("MatMul:0", shape=TensorShape([Dimension(1), Dimension(1)]), dtype=float32)

我知道图在会话上运行,但是没有任何方法可以检查张量对象的输出而不在会话中运行图吗?


当前回答

基于上面的答案,使用特定的代码片段,您可以像这样打印产品:

import tensorflow as tf
#Initialize the session
sess = tf.InteractiveSession()

matrix1 = tf.constant([[3., 3.]])
matrix2 = tf.constant([[2.],[2.]])
product = tf.matmul(matrix1, matrix2)

#print the product
print(product.eval())

#close the session to release resources
sess.close()

其他回答

基本上,在tensorflow中,当你创建任何类型的张量时,它们都会被创建并存储在里面,只有当你运行tensorflow会话时才能访问。假设你已经创建了一个常数张量 c = tf.constant ([(1.0, 2.0, 3.0), (4.0, 5.0, 6.0))) 不运行会话,您可以得到 —op:操作。计算这个张量的运算。 —value_index: int类型。生成这个张量的操作端点的索引。 —dtype: dtype类型。存储在这个张量中的元素类型。

为了得到这些值,你可以用你需要的张量运行一个会话:

with tf.Session() as sess:
    print(sess.run(c))
    sess.close()

输出将是这样的:

array([[1st, 2nd, 3rd], [4th, 5th, 6th]], dtype=float32)

你可以使用Keras,一行回答将使用eval方法,如下所示:

import keras.backend as K
print(K.eval(your_tensor))

我认为你需要掌握一些基本知识。通过上面的例子,你已经创建了张量(多维数组)。但是要让张量流真正工作,你必须启动一个“会话”,并在会话中运行你的“操作”。注意单词“session”和“operation”。 要使用张量流,你需要知道4件事:

张量 操作 会话 图

现在,从你写出来的东西中,你已经给出了张量和操作,但你没有运行会话,也没有图。张量(图的边)在图中流动,并由操作(图的节点)操作。有默认的图形,但你可以在会话中初始化你的。

当你说打印时,你只访问你定义的变量或常数的形状。

所以你可以看到你错过了什么:

 with tf.Session() as sess:     
           print(sess.run(product))
           print (product.eval())

希望能有所帮助!

通过启用即时执行,你可以检查TensorObject的输出,而不用在会话中运行图。

只需添加以下两行代码: 导入tensorflow.contrib.eager为tfe tfe.enable_eager_execution ()

在你导入tensorflow之后。

在你的例子中打印产品的输出现在将是: 特遣部队。张量([[12。[],形状=(1,1),dtype=float32)

请注意,从现在(2017年11月)开始,你必须每晚安装一个Tensorflow构建来实现快速执行。预建车轮可以在这里找到。

我不确定我是否遗漏了这里,但我认为最简单和最好的方法是使用tf.keras.backend。get_value API。

print(product)
>>tf.Tensor([[12.]], shape=(1, 1), dtype=float32)
print(tf.keras.backend.get_value(product))
>>[[12.]]