我试图通过csv文件进行解析,并仅从特定列中提取数据。

例csv:

ID | Name | Address | City | State | Zip | Phone | OPEID | IPEDS |
10 | C... | 130 W.. | Mo.. | AL... | 3.. | 334.. | 01023 | 10063 |

我试图只捕获特定的列,比如ID、Name、Zip和Phone。

我看过的代码让我相信我可以通过对应的数字调用特定的列,因此ie: Name将对应于2,并且使用行[2]遍历每一行将产生列2中的所有项。但事实并非如此。

以下是我目前所做的:

import sys, argparse, csv
from settings import *

# command arguments
parser = argparse.ArgumentParser(description='csv to postgres',\
 fromfile_prefix_chars="@" )
parser.add_argument('file', help='csv file to import', action='store')
args = parser.parse_args()
csv_file = args.file

# open csv file
with open(csv_file, 'rb') as csvfile:

    # get number of columns
    for line in csvfile.readlines():
        array = line.split(',')
        first_item = array[0]

    num_columns = len(array)
    csvfile.seek(0)

    reader = csv.reader(csvfile, delimiter=' ')
        included_cols = [1, 2, 6, 7]

    for row in reader:
            content = list(row[i] for i in included_cols)
            print content

我期望它只打印出每行我想要的特定列,但它没有,我只打印出最后一列。


当前回答

由于你可以索引和子集pandas数据框架,一个非常简单的方法从csv文件提取单列到一个变量是:

myVar = pd.read_csv('YourPath', sep = ",")['ColumnName']

有几件事需要考虑:

上面的代码片段将生成一个pandas系列,而不是数据框架。 如果速度是一个问题,ayhan和usecols的建议也会更快。 在一个2122 KB大小的csv文件上使用%timeit测试这两种不同的方法,usecols方法得到22.8 ms的结果,而我建议的方法得到53 ms的结果。

别忘了进口熊猫当pd

其他回答

SAMPLE.CSV
a, 1, +
b, 2, -
c, 3, *
d, 4, /
column_names = ["Letter", "Number", "Symbol"]
df = pd.read_csv("sample.csv", names=column_names)
print(df)
OUTPUT
  Letter  Number Symbol
0      a       1      +
1      b       2      -
2      c       3      *
3      d       4      /

letters = df.Letter.to_list()
print(letters)
OUTPUT
['a', 'b', 'c', 'd']

对于pandas,你可以使用read_csv和usecols参数:

df = pd.read_csv(filename, usecols=['col1', 'col3', 'col7'])

例子:

import pandas as pd
import io

s = '''
total_bill,tip,sex,smoker,day,time,size
16.99,1.01,Female,No,Sun,Dinner,2
10.34,1.66,Male,No,Sun,Dinner,3
21.01,3.5,Male,No,Sun,Dinner,3
'''

df = pd.read_csv(io.StringIO(s), usecols=['total_bill', 'day', 'size'])
print(df)

   total_bill  day  size
0       16.99  Sun     2
1       10.34  Sun     3
2       21.01  Sun     3
import csv
from collections import defaultdict

columns = defaultdict(list) # each value in each column is appended to a list

with open('file.txt') as f:
    reader = csv.DictReader(f) # read rows into a dictionary format
    for row in reader: # read a row as {column1: value1, column2: value2,...}
        for (k,v) in row.items(): # go over each column name and value 
            columns[k].append(v) # append the value into the appropriate list
                                 # based on column name k

print(columns['name'])
print(columns['phone'])
print(columns['street'])
      

像这样的文件

name,phone,street
Bob,0893,32 Silly
James,000,400 McHilly
Smithers,4442,23 Looped St.

将输出

>>> 
['Bob', 'James', 'Smithers']
['0893', '000', '4442']
['32 Silly', '400 McHilly', '23 Looped St.']

或者如果你想对列进行数字索引:

with open('file.txt') as f:
    reader = csv.reader(f)
    next(reader)
    for row in reader:
        for (i,v) in enumerate(row):
            columns[i].append(v)
print(columns[0])

>>> 
['Bob', 'James', 'Smithers']

要更改分隔符,请将delimiter=" "添加到适当的实例化,即reader = csv。读者(f,分隔符= " ")

从这段代码中获得最后一列的唯一方法是在for循环中不包含print语句。

这很可能是你代码的结尾:

for row in reader:
    content = list(row[i] for i in included_cols)
print content

你希望它是这样的:

for row in reader:
        content = list(row[i] for i in included_cols)
        print content

现在我们已经解决了你的错误,我想借此时间向你介绍熊猫模块。

Pandas在处理csv文件方面非常出色,下面的代码将是读取csv并将整个列保存到变量中所需要的全部代码:

import pandas as pd
df = pd.read_csv(csv_file)
saved_column = df.column_name #you can also use df['column_name']

所以如果你想保存你列Names中的所有信息到一个变量中,这就是你所需要做的:

names = df.Names

这是一个很棒的模块,我建议你研究一下。如果由于某种原因,你的打印语句在for循环中,它仍然只打印出最后一列,这是不应该发生的,但如果我的假设是错误的,请告诉我。你发布的代码有很多缩进错误,所以很难知道什么应该在哪里。希望这对你有帮助!

import csv

with open('input.csv', encoding='utf-8-sig') as csv_file:
    # the below statement will skip the first row
    next(csv_file)
    reader= csv.DictReader(csv_file)
   
    Time_col ={'Time' : []}
    #print(Time_col)
    for record in reader :
        Time_col['Time'].append(record['Time'])
        print(Time_col)