我有两个数据帧df1和df2,其中df2是df1的子集。我如何得到一个新的数据帧(df3),这是两个数据帧之间的差异?

换句话说,一个在df1中所有的行/列都不在df2中的数据帧?


当前回答

对于行,尝试这样做,其中Name是联合索引列(可以是多个公共列的列表,或者指定left_on和right_on):

m = df1.merge(df2, on='Name', how='outer', suffixes=['', '_'], indicator=True)

indicator=True设置很有用,因为它添加了一个名为_merge的列,其中包含df1和df2之间的所有更改,分为3种可能的类型:“left_only”,“right_only”或“both”。

对于列,试试这个:

set(df1.columns).symmetric_difference(df2.columns)

其他回答

也许是一个简单的单行程序,具有相同或不同的列名。即使df2['Name2']包含重复的值也能正常工作。

newDf = df1.set_index('Name1')
           .drop(df2['Name2'], errors='ignore')
           .reset_index(drop=False)

除了公认的答案,我想提出一个更广泛的解决方案,可以找到两个数据框架的2D集差异与任何索引/列(他们可能不符合两个数据框架)。此外,该方法允许设置浮动元素的容忍度,用于数据帧比较(它使用np.isclose)


import numpy as np
import pandas as pd

def get_dataframe_setdiff2d(df_new: pd.DataFrame, 
                            df_old: pd.DataFrame, 
                            rtol=1e-03, atol=1e-05) -> pd.DataFrame:
    """Returns set difference of two pandas DataFrames"""

    union_index = np.union1d(df_new.index, df_old.index)
    union_columns = np.union1d(df_new.columns, df_old.columns)

    new = df_new.reindex(index=union_index, columns=union_columns)
    old = df_old.reindex(index=union_index, columns=union_columns)

    mask_diff = ~np.isclose(new, old, rtol, atol)

    df_bool = pd.DataFrame(mask_diff, union_index, union_columns)

    df_diff = pd.concat([new[df_bool].stack(),
                         old[df_bool].stack()], axis=1)

    df_diff.columns = ["New", "Old"]

    return df_diff

例子:

In [1]

df1 = pd.DataFrame({'A':[2,1,2],'C':[2,1,2]})
df2 = pd.DataFrame({'A':[1,1],'B':[1,1]})

print("df1:\n", df1, "\n")

print("df2:\n", df2, "\n")

diff = get_dataframe_setdiff2d(df1, df2)

print("diff:\n", diff, "\n")
Out [1]

df1:
   A  C
0  2  2
1  1  1
2  2  2 

df2:
   A  B
0  1  1
1  1  1 

diff:
     New  Old
0 A  2.0  1.0
  B  NaN  1.0
  C  2.0  NaN
1 B  NaN  1.0
  C  1.0  NaN
2 A  2.0  NaN
  C  2.0  NaN 

另一个可能的解决方案是使用numpy广播:

df1[np.all(~np.all(df1.values == df2.values[:, None], axis=2), axis=0)]

输出:

    Name  Age
1   Mike   45
4  Marry   27
7   Bolt   39

我在处理副本时遇到了问题,当一边有副本,另一边至少有一个副本时,所以我使用了Counter。集合做一个更好的差异,确保双方有相同的计数。这不会返回副本,但如果双方有相同的计数,则不会返回任何副本。

from collections import Counter

def diff(df1, df2, on=None):
    """
    :param on: same as pandas.df.merge(on) (a list of columns)
    """
    on = on if on else df1.columns
    df1on = df1[on]
    df2on = df2[on]
    c1 = Counter(df1on.apply(tuple, 'columns'))
    c2 = Counter(df2on.apply(tuple, 'columns'))
    c1c2 = c1-c2
    c2c1 = c2-c1
    df1ondf2on = pd.DataFrame(list(c1c2.elements()), columns=on)
    df2ondf1on = pd.DataFrame(list(c2c1.elements()), columns=on)
    df1df2 = df1.merge(df1ondf2on).drop_duplicates(subset=on)
    df2df1 = df2.merge(df2ondf1on).drop_duplicates(subset=on)
    return pd.concat([df1df2, df2df1])
> df1 = pd.DataFrame({'a': [1, 1, 3, 4, 4]})
> df2 = pd.DataFrame({'a': [1, 2, 3, 4, 4]})
> diff(df1, df2)
   a
0  1
0  2

试试这个: Df_new = df1。merge(df2, how='outer', indicator=True)。查询('_merge == "left_only"')。下降(_merge, 1)

它将产生一个新的数据框架,其差异是:df1中存在的值,而df2中不存在。