实现以下目标最有效的算法是什么:
0010 0000 => 0000 0100
从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。
实现以下目标最有效的算法是什么:
0010 0000 => 0000 0100
从MSB->LSB转换为LSB->MSB。所有位都必须反转;也就是说,这不是字节交换。
当前回答
// Purpose: to reverse bits in an unsigned short integer
// Input: an unsigned short integer whose bits are to be reversed
// Output: an unsigned short integer with the reversed bits of the input one
unsigned short ReverseBits( unsigned short a )
{
// declare and initialize number of bits in the unsigned short integer
const char num_bits = sizeof(a) * CHAR_BIT;
// declare and initialize bitset representation of integer a
bitset<num_bits> bitset_a(a);
// declare and initialize bitset representation of integer b (0000000000000000)
bitset<num_bits> bitset_b(0);
// declare and initialize bitset representation of mask (0000000000000001)
bitset<num_bits> mask(1);
for ( char i = 0; i < num_bits; ++i )
{
bitset_b = (bitset_b << 1) | bitset_a & mask;
bitset_a >>= 1;
}
return (unsigned short) bitset_b.to_ulong();
}
void PrintBits( unsigned short a )
{
// declare and initialize bitset representation of a
bitset<sizeof(a) * CHAR_BIT> bitset(a);
// print out bits
cout << bitset << endl;
}
// Testing the functionality of the code
int main ()
{
unsigned short a = 17, b;
cout << "Original: ";
PrintBits(a);
b = ReverseBits( a );
cout << "Reversed: ";
PrintBits(b);
}
// Output:
Original: 0000000000010001
Reversed: 1000100000000000
其他回答
另一个基于循环的解决方案,在数量较低时快速退出(在c++中用于多种类型)
template<class T>
T reverse_bits(T in) {
T bit = static_cast<T>(1) << (sizeof(T) * 8 - 1);
T out;
for (out = 0; bit && in; bit >>= 1, in >>= 1) {
if (in & 1) {
out |= bit;
}
}
return out;
}
或者C语言中unsigned int
unsigned int reverse_bits(unsigned int in) {
unsigned int bit = 1u << (sizeof(T) * 8 - 1);
unsigned int out;
for (out = 0; bit && in; bit >>= 1, in >>= 1) {
if (in & 1)
out |= bit;
}
return out;
}
好吧,这基本上与第一个“reverse()”相同,但它是64位的,只需要从指令流中加载一个即时掩码。GCC创建的代码没有跳转,所以这应该是相当快的。
#include <stdio.h>
static unsigned long long swap64(unsigned long long val)
{
#define ZZZZ(x,s,m) (((x) >>(s)) & (m)) | (((x) & (m))<<(s));
/* val = (((val) >>16) & 0xFFFF0000FFFF) | (((val) & 0xFFFF0000FFFF)<<16); */
val = ZZZZ(val,32, 0x00000000FFFFFFFFull );
val = ZZZZ(val,16, 0x0000FFFF0000FFFFull );
val = ZZZZ(val,8, 0x00FF00FF00FF00FFull );
val = ZZZZ(val,4, 0x0F0F0F0F0F0F0F0Full );
val = ZZZZ(val,2, 0x3333333333333333ull );
val = ZZZZ(val,1, 0x5555555555555555ull );
return val;
#undef ZZZZ
}
int main(void)
{
unsigned long long val, aaaa[16] =
{ 0xfedcba9876543210,0xedcba9876543210f,0xdcba9876543210fe,0xcba9876543210fed
, 0xba9876543210fedc,0xa9876543210fedcb,0x9876543210fedcba,0x876543210fedcba9
, 0x76543210fedcba98,0x6543210fedcba987,0x543210fedcba9876,0x43210fedcba98765
, 0x3210fedcba987654,0x210fedcba9876543,0x10fedcba98765432,0x0fedcba987654321
};
unsigned iii;
for (iii=0; iii < 16; iii++) {
val = swap64 (aaaa[iii]);
printf("A[]=%016llX Sw=%016llx\n", aaaa[iii], val);
}
return 0;
}
对于喜欢递归的人来说,这是另一个解决方案。
这个想法很简单。 将输入除以一半并交换两部分,继续直到达到单个位。
Illustrated in the example below.
Ex : If Input is 00101010 ==> Expected output is 01010100
1. Divide the input into 2 halves
0010 --- 1010
2. Swap the 2 Halves
1010 0010
3. Repeat the same for each half.
10 -- 10 --- 00 -- 10
10 10 10 00
1-0 -- 1-0 --- 1-0 -- 0-0
0 1 0 1 0 1 0 0
Done! Output is 01010100
这里有一个递归函数来求解。(注意,我使用了unsigned int,所以它可以用于sizeof(unsigned int)*8位的输入。
递归函数有两个参数-需要位的值 要反转的值和值中的比特数。
int reverse_bits_recursive(unsigned int num, unsigned int numBits)
{
unsigned int reversedNum;;
unsigned int mask = 0;
mask = (0x1 << (numBits/2)) - 1;
if (numBits == 1) return num;
reversedNum = reverse_bits_recursive(num >> numBits/2, numBits/2) |
reverse_bits_recursive((num & mask), numBits/2) << numBits/2;
return reversedNum;
}
int main()
{
unsigned int reversedNum;
unsigned int num;
num = 0x55;
reversedNum = reverse_bits_recursive(num, 8);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0xabcd;
reversedNum = reverse_bits_recursive(num, 16);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x123456;
reversedNum = reverse_bits_recursive(num, 24);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
num = 0x11223344;
reversedNum = reverse_bits_recursive(num,32);
printf ("Bit Reversal Input = 0x%x Output = 0x%x\n", num, reversedNum);
}
输出如下:
Bit Reversal Input = 0x55 Output = 0xaa
Bit Reversal Input = 0xabcd Output = 0xb3d5
Bit Reversal Input = 0x123456 Output = 0x651690
Bit Reversal Input = 0x11223344 Output = 0x22cc4488
unsigned char ReverseBits(unsigned char data)
{
unsigned char k = 0, rev = 0;
unsigned char n = data;
while(n)
{
k = n & (~(n - 1));
n &= (n - 1);
rev |= (128 / k);
}
return rev;
}
似乎许多其他帖子都关心速度(即最好=最快)。 简单性怎么样?考虑:
char ReverseBits(char character) {
char reversed_character = 0;
for (int i = 0; i < 8; i++) {
char ith_bit = (c >> i) & 1;
reversed_character |= (ith_bit << (sizeof(char) - 1 - i));
}
return reversed_character;
}
并希望聪明的编译器将为您优化。
如果你想反转一个更长的位列表(包含sizeof(char) * n位),你可以使用这个函数得到:
void ReverseNumber(char* number, int bit_count_in_number) {
int bytes_occupied = bit_count_in_number / sizeof(char);
// first reverse bytes
for (int i = 0; i <= (bytes_occupied / 2); i++) {
swap(long_number[i], long_number[n - i]);
}
// then reverse bits of each individual byte
for (int i = 0; i < bytes_occupied; i++) {
long_number[i] = ReverseBits(long_number[i]);
}
}
这将把[10000000,10101010]反向转换为[01010101,00000001]。