假设我们有一个包含多个data.csv文件的文件夹,每个文件包含相同数量的变量,但每个变量来自不同的时间。 在R中是否有一种方法可以同时导入它们而不是逐个导入?

我的问题是我有大约2000个数据文件要导入,并且只能通过使用代码单独导入它们:

read.delim(file="filename", header=TRUE, sep="\t")

效率不高。


当前回答

在我看来,大多数其他答案都被里约热内卢::import_list淘汰了,这是一个简洁的一行程序:

library(rio)
my_data <- import_list(dir("path_to_directory", pattern = ".csv"), rbind = TRUE)

任何额外的参数都传递给里约热内卢::import。里约热内卢几乎可以处理R可以读取的任何文件格式,而且它使用数据。桌子的fread在可能的地方,所以它也应该快。

其他回答

使用plyr::ldply,在读取400个csv文件时,通过启用.parallel选项,大约可以提高50%的速度,每个文件大约30-40 MB。示例包括一个文本进度条。

library(plyr)
library(data.table)
library(doSNOW)

csv.list <- list.files(path="t:/data", pattern=".csv$", full.names=TRUE)

cl <- makeCluster(4)
registerDoSNOW(cl)

pb <- txtProgressBar(max=length(csv.list), style=3)
pbu <- function(i) setTxtProgressBar(pb, i)
dt <- setDT(ldply(csv.list, fread, .parallel=TRUE, .paropts=list(.options.snow=list(progress=pbu))))

stopCluster(cl)

如下所示,每个数据帧都应该作为单个列表中的单独元素:

temp = list.files(pattern="*.csv")
myfiles = lapply(temp, read.delim)

这里假设您将这些csv文件放在一个目录(您当前的工作目录)中,并且它们都具有小写扩展名.csv。

如果你想把这些数据帧组合成一个单一的数据帧,请参考其他答案中的解决方案,如do.call(rbind,…),dplyr::bind_rows()或data.table::rbindlist()。

如果你真的想要每个数据帧在一个单独的对象中,即使这通常是不可取的,你可以使用assign执行以下操作:

temp = list.files(pattern="*.csv")
for (i in 1:length(temp)) assign(temp[i], read.csv(temp[i]))

或者,不带赋值,并演示(1)如何清理文件名以及(2)如何使用list2env,您可以尝试以下方法:

temp = list.files(pattern="*.csv")
list2env(
  lapply(setNames(temp, make.names(gsub("*.csv$", "", temp))), 
         read.csv), envir = .GlobalEnv)

但是,最好还是把它们放在一个列表中。

除了使用lapply或R中的其他循环构造,您还可以将CSV文件合并到一个文件中。

在Unix中,如果文件没有头文件,那么很简单:

cat *.csv > all.csv

或者如果有标题,你可以找到一个字符串匹配标题,只有标题(即假设标题行都以“年龄”开头),你会这样做:

cat *.csv | grep -v ^Age > all.csv

我认为在Windows中,你可以通过DOS命令框中的COPY和SEARCH(或FIND或其他什么)来做到这一点,但为什么不安装cygwin并获得Unix命令shell的强大功能呢?

这是我开发的代码,读取所有csv文件到R.它将为每个csv文件单独创建一个dataframe,并标题dataframe文件的原始名称(删除空格和.csv),我希望你发现它有用!

path <- "C:/Users/cfees/My Box Files/Fitness/"
files <- list.files(path=path, pattern="*.csv")
for(file in files)
{
perpos <- which(strsplit(file, "")[[1]]==".")
assign(
gsub(" ","",substr(file, 1, perpos-1)), 
read.csv(paste(path,file,sep="")))
}

使用purrr并将文件id作为列:

library(tidyverse)


p <- "my/directory"
files <- list.files(p, pattern="csv", full.names=TRUE) %>%
    set_names()
merged <- files %>% map_dfr(read_csv, .id="filename")

如果没有set_names(), .id=将使用整数指示符,而不是实际的文件名。

如果你想要一个短的文件名而不是完整的路径:

merged <- merged %>% mutate(filename=basename(filename))