我有一个列表,我想通过项目的属性进行筛选。

以下哪个是首选(可读性,性能,其他原因)?

xs = [x for x in xs if x.attribute == value]
xs = filter(lambda x: x.attribute == value, xs)

当前回答

你的问题既简单又有趣。它只是显示了python作为一种编程语言是多么的灵活。人们可以使用任何逻辑,根据自己的才能和理解来编写程序。只要我们得到答案就好。

在您的情况下,这只是一个简单的过滤方法,可以由两者完成,但我更喜欢第一个my_list = [x for x in my_list if x.attribute == value],因为它看起来简单,不需要任何特殊的语法。任何人都可以理解这个命令,并在需要时进行更改。 (虽然第二种方法也很简单,但对于初级程序员来说,它仍然比第一种方法更复杂)

其他回答

由于任何速度差异都必然是微乎其微的,因此使用过滤器还是列表推导式都取决于个人喜好。一般来说,我倾向于使用推导式(这似乎与这里的大多数其他答案一致),但有一种情况下,我更喜欢过滤器。

一个非常常见的用例是根据谓词P(X)提取某个可迭代对象X的值:

[x for x in X if P(x)]

但有时你想先对值应用一些函数:

[f(x) for x in X if P(f(x))]

作为一个具体的例子,请考虑

primes_cubed = [x*x*x for x in range(1000) if prime(x)]

我认为这看起来比使用滤镜要好一点。但是现在想想

prime_cubes = [x*x*x for x in range(1000) if prime(x*x*x)]

在本例中,我们希望根据后计算值进行过滤。除了计算立方体两次的问题(想象一个更昂贵的计算),还有编写表达式两次的问题,这违反了DRY美学。在这种情况下,我会使用

prime_cubes = filter(prime, [x*x*x for x in range(1000)])

尽管过滤器可能是“更快的方式”,但“Python方式”是不关心这些事情,除非性能绝对关键(在这种情况下,您不会使用Python!)。

就性能而言,这要视情况而定。

filter不返回一个列表而是一个迭代器,如果你需要列表“立即”过滤和列表转换,它比非常大的列表(>1M)的列表理解要慢40%左右。到100K的元素几乎没有区别,从600K开始就开始有区别了。

如果不转换为列表,筛选实际上是即时的。

更多信息请访问:https://blog.finxter.com/python-lists-filter-vs-list-comprehension-which-is-faster/

一般过滤器稍快,如果使用内置函数。

在您的情况下,我希望列表理解稍微快一些

奇怪的是,不同的人的美相差如此之大。我发现列表理解比filter+lambda清晰得多,但使用您认为更容易的。

有两件事可能会减慢你使用滤镜的速度。

首先是函数调用开销:一旦使用Python函数(无论是由def还是lambda创建的),过滤器很可能会比列表理解慢。几乎可以肯定,这并不重要,在对代码进行计时并发现它是一个瓶颈之前,您不应该过多地考虑性能,但区别是存在的。

可能应用的另一个开销是lambda被强制访问一个有作用域的变量(值)。这比在python2中访问局部变量要慢。X,列表推导式只访问局部变量。如果你使用的是Python 3。X,列表综合在一个单独的函数中运行,因此它也将通过闭包访问值,这种差异将不适用。

另一个可以考虑的选项是使用生成器而不是列表推导式:

def filterbyvalue(seq, value):
   for el in seq:
       if el.attribute==value: yield el

然后在你的主代码中(这是可读性真正重要的地方),你用一个有意义的函数名替换了列表理解和过滤器。